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Abstract

Word alignment plays a crucial role in sta-
tistical machine translation. Word-aligned
corpora have been found to be an excellent
source of translation-related knowledge.
We present a statistical model for comput-
ing the probability of an alignment given a
sentence pair. This model allows easy in-
tegration of context-specific features. Our
experiments show that this model can be
an effective tool for improving an existing
word alignment.

1 Introduction

Word alignments were first introduced as an in-
termediate result of statistical machine translation
systems (Brown et al., 1993). Since their intro-
duction, many researchers have become interested
in word alignments as a knowledge source. For
example, alignments can be used to learn transla-
tion lexicons (Melamed, 1996), transfer rules (Car-
bonell et al., 2002; Menezes and Richardson, 2001),
and classifiers to find safe sentence segmentation
points (Berger et al., 1996).

In addition to the IBM models, researchers have
proposed a number of alternative alignment meth-
ods. These methods often involve using a statistic
such asφ2 (Gale and Church, 1991) or the log likeli-
hood ratio (Dunning, 1993) to create a score to mea-
sure the strength of correlation between source and
target words. Such measures can then be used to
guide a constrained search to produce word align-
ments (Melamed, 2000).

It has been shown that once a baseline alignment
has been created, one can improve results by using
a refined scoring metric that is based on the align-
ment. For example Melamed uses competitive link-
ing along with an explicit noise model in (Melamed,
2000) to produce a new scoring metric, which in turn
creates better alignments.

In this paper, we present a simple, flexible, sta-
tistical model that is designed to capture the infor-
mation present in a baseline alignment. This model
allows us to compute the probability of an align-
ment for a given sentence pair. It also allows for
the easy incorporation of context-specific knowl-
edge into alignment probabilities.

A critical reader may pose the question, “Why in-
vent a new statistical model for this purpose, when
existing, proven models are available to train on a
given word alignment?” We will demonstrate exper-
imentally that, for the purposes of refinement, our
model achieves better results than a comparable ex-
isting alternative.

We will first present this model in its most general
form. Next, we describe an alignment algorithm that
integrates this model with linguistic constraints in
order to produce high quality word alignments. We
will follow with our experimental results and dis-
cussion. We will close with a look at how our work
relates to other similar systems and a discussion of
possible future directions.

2 Probability Model

In this section we describe our probability model.
To do so, we will first introduce some necessary no-
tation. LetE be an English sentencee1, e2, . . . , em



and letF be a French sentencef1, f2, . . . , fn. We
define alink l(ei, fj) to exist ifei andfj are a trans-
lation (or part of a translation) of one another. We
define thenull link l(ei, f0) to exist if ei does not
correspond to a translation for any French word in
F . The null link l(e0, fj) is defined similarly. An
alignment A for two sentencesE andF is a set of
links such that every word inE andF participates in
at least one link, and a word linked toe0 or f0 partic-
ipates in no other links. Ife occurs inE x times and
f occurs inF y times, we say thate andf co-occur
xy times in this sentence pair.

We define the alignment problem as finding the
alignmentA that maximizesP (A|E,F ). This cor-
responds to finding the Viterbi alignment in the
IBM translation systems. Those systems model
P (F,A|E), which when maximized is equivalent to
maximizingP (A|E,F ). We propose here a system
which modelsP (A|E,F ) directly, using a different
decomposition of terms.

In the IBM models of translation, alignments exist
as artifacts of which English words generated which
French words. Our model does not state that one
sentence generates the other. Instead it takes both
sentences as given, and uses the sentences to deter-
mine an alignment. An alignmentA consists oft
links {l1, l2, . . . , lt}, where eachlk = l(eik , fjk

) for
someik andjk. We will refer to consecutive subsets
of A aslji = {li, li+1, . . . , lj}. Given this notation,
P (A|E,F ) can be decomposed as follows:

P (A|E,F ) = P (lt1|E,F ) =
t∏

k=1

P (lk|E,F, lk−1
1 )

At this point, we must factorP (lk|E,F, lk−1
1 ) to

make computation feasible. LetCk = {E,F, lk−1
1 }

represent the context oflk. Note that both the con-
text Ck and the linklk imply the occurrence ofeik

andfjk
. We can rewriteP (lk|Ck) as:

P (lk|Ck) =
P (lk, Ck)
P (Ck)

=
P (Ck|lk)P (lk)
P (Ck, eik , fjk

)

=
P (Ck|lk)

P (Ck|eik , fjk
)
× P (lk, eik , fjk

)
P (eik , fjk

)

= P (lk|eik , fjk
)× P (Ck|lk)

P (Ck|eik , fjk
)

HereP (lk|eik , fjk
) is link probability given a co-

occurrence of the two words, which is similar in
spirit to Melamed’s explicit noise model (Melamed,
2000). This term depends only on the words in-
volved directly in the link. The ratio P (Ck|lk)

P (Ck|eik
,fjk

)

modifies the link probability, providing context-
sensitive information.

Up until this point, we have made no simplify-
ing assumptions in our derivation. Unfortunately,
Ck = {E,F, lk−1

1 } is too complex to estimate con-
text probabilities directly. SupposeFTk is a set
of context-related features such thatP (lk|Ck) can
be approximated byP (lk|eik , fjk

, FTk). Let C ′
k =

{eik , fjk
}∪FTk. P (lk|C ′

k) can then be decomposed
using the same derivation as above.

P (lk|C ′
k) = P (lk|eik , fjk

)× P (C ′
k|lk)

P (C ′
k|eik , fjk

)

= P (lk|eik , fjk
)× P (FTk|lk)

P (FTk|eik , fjk
)

In the second line of this derivation, we can drop
eik andfjk

fromC ′
k, leaving onlyFTk, because they

are implied by the events which the probabilities are
conditionalized on. Now, we are left with the task
of approximatingP (FTk|lk) andP (FTk|eik , fjk

).
To do so, we will assume that for allft ∈ FTk,
ft is conditionally independent given eitherlk or
(eik , fjk

). This allows us to approximate alignment
probabilityP (A|E,F ) as follows:

t∏
k=1

P (lk|eik , fjk
)×

∏
ft∈FTk

P (ft|lk)
P (ft|eik , fjk

)


In any context, only a few features will be ac-

tive. The inner product is understood to be only over
those featuresft that are present in the current con-
text. This approximation will causeP (A|E,F ) to
no longer be a well-behaved probability distribution,
though as in Naive Bayes, it can be an excellent es-
timator for the purpose of ranking alignments.

If we have an aligned training corpus, the prob-
abilities needed for the above equation are quite
easy to obtain. Link probabilities can be deter-
mined directly from|lk| (link counts) and|eik , fj,k|
(co-occurrence counts). For any co-occurring pair
of words (eik , fjk

), we check whether it has the
featureft. If it does, we increment the count of



|ft, eik , fjk
|. If this pair is also linked, then we in-

crement the count of|ft, lk|. Note that our definition
of FTk allows for features that depend on previous
links. For this reason, when determining whether or
not a feature is present in a given context, one must
impose an ordering on the links. This ordering can
be arbitrary as long as the same ordering is used in
training1 and probability evaluation. A simple solu-
tion would be to order links according their French
words. We choose to order links according to the
link probability P (lk|eik , fjk

) as it has an intuitive
appeal of allowing more certain links to provide con-
text for others.

We store probabilities in two tables. The first ta-
ble stores link probabilitiesP (lk|eik , fjk

). It has an
entry for every word pair that was linked at least
once in the training corpus. Its size is the same as
the translation table in the IBM models. The sec-
ond table stores feature probabilities,P (ft|lk) and
P (ft|eik , fjk

). For every linked word pair, this table
has two entries for each active feature. In the worst
case this table will be of size2×|FT |×|E|×|F |. In
practice, it is much smaller as most contexts activate
only a small number of features.

In the next subsection we will walk through a sim-
ple example of this probability model in action. We
will describe the features used in our implementa-
tion of this model in Section 3.2.

2.1 An Illustrative Example

Figure 1 shows an aligned corpus consisting of
one sentence pair. Suppose that we are concerned
with only one featureft that is active2 for eik

and fjk
if an adjacent pair is an alignment, i.e.,

l(eik−1, fjk−1) ∈ lk−1
1 or l(eik+1, fjk+1) ∈ lk−1

1 .
This example would produce the probability tables
shown in Table 1.

Note howft is active for the(a, v) link, and is
not active for the(b, u) link. This is due to our se-
lected ordering. Table 1 allows us to calculate the
probability of this alignment as:

1In our experiments, the ordering is not necessary during
training to achieve good performance.

2Throughout this paper we will assume that null alignments
are special cases, and do not activate or participate in features
unless otherwise stated in the feature description.

a b a

u v v

e

f0

0

Figure 1: An Example Aligned Corpus

Table 1: Example Probability Tables

(a) Link Counts and Probabilities
eik fjk

|lk| |eik , fjk
| P (lk|eik , fjk

)
b u 1 1 1

a f0 1 2 1
2

e0 v 1 2 1
2

a v 1 4 1
4

(b) Feature Counts
eik fjk

|ft, lk| |ft, eik , fjk
|

a v 1 1

(c) Feature Probabilities
eik fjk

P (ft|lk) P (ft|eik , fjk
)

a v 1 1
4

P (A|E,F ) = P (l(b, u)|b, u)×
P (l(a, f0)|a, f0)×
P (l(e0, v)|e0, v)×
P (l(a, v)|a, v)P (ft|l(a,v))

P (ft|a,v)

= 1× 1
2 ×

1
2 ×

1
4 ×

1
1
4

= 1
4

3 Word-Alignment Algorithm

In this section, we describe a world-alignment al-
gorithm guided by the alignment probability model
derived above. In designing this algorithm we have
selected constraints, features and a search method
in order to achieve high performance. The model,
however, is general, and could be used with any in-
stantiation of the above three factors. This section
will describe and motivate the selection of our con-
straints, features and search method.

The input to our word-alignment algorithm con-
sists of a pair of sentencesE andF , and the depen-
dency treeTE for E. TE allows us to make use of



features and constraints that are based on linguistic
intuitions.

3.1 Constraints

The reader will note that our alignment model as de-
scribed above has very few factors to prevent unde-
sirable alignments, such as having all French words
align to the same English word. To guide the model
to correct alignments, we employ two constraints to
limit our search for the most probable alignment.
The first constraint is theone-to-one constraint
(Melamed, 2000): every word (except the null words
e0 andf0) participates in exactly one link.

The second constraint, known as thecohesion
constraint (Fox, 2002), uses the dependency tree
(Mel’ čuk, 1987) of the English sentence to restrict
possible link combinations. Given the dependency
treeTE , the alignment can induce a dependency tree
for F (Hwa et al., 2002). The cohesion constraint
requires that this induced dependency tree does not
have any crossing dependencies. The details about
how the cohesion constraint is implemented are out-
side the scope of this paper.3 Here we will use a sim-
ple example to illustrate the effect of the constraint.
Consider the partial alignment in Figure 2. When
the system attempts to linkof andde, the new link
will induce the dotted dependency, which crosses a
previously induced dependency betweenserviceand
donńees. Therefore,of anddewill not be linked.

 the status of the data service

l' état du service de données

nn
det

pcomp

moddet

Figure 2: An Example of Cohesion Constraint

3.2 Features

In this section we introduce two types of features
that we use in our implementation of the probabil-
ity model described in Section 2. The first feature

3The algorithm for checking the cohesion constraint is pre-
sented in a separate paper which is currently under review.

the host discovers all the devices

det
subj

pre

det

obj

 l'  hôte repère tous les périphériques

1 2 3 4 5

1 2 3 4 5 6

6

the host locate all the peripherals

Figure 3: Feature Extraction Example

typefta concerns surrounding links. It has been ob-
served that words close to each other in the source
language tend to remain close to each other in the
translation (Vogel et al., 1996; Ker and Change,
1997). To capture this notion, for any word pair
(ei, fj), if a link l(ei′ , fj′) exists wherei− 2 ≤ i′ ≤
i + 2 andj − 2 ≤ j′ ≤ j + 2, then we say that the
featurefta(i−i′, j−j′, ei′) is active for this context.
We refer to these asadjacency features.

The second feature typeftd uses the English
parse tree to capture regularities among grammati-
cal relations between languages. For example, when
dealing with French and English, the location of
the determiner with respect to its governor4 is never
swapped during translation, while the location of ad-
jectives is swapped frequently. For any word pair
(ei, fj), let ei′ be the governor ofei, and letrel be
the relationship between them. If a linkl(ei′ , fj′)
exists, then we say that the featureftd(j−j′, rel) is
active for this context. We refer to these asdepen-
dency features.

Take for example Figure 3 which shows a par-
tial alignment with all links completed except for
those involving ‘the’. Given this sentence pair and
English parse tree, we can extract features of both
types to assist in the alignment ofthe1. The word
pair (the1, l

′) will have an active adjacency feature
fta(+1,+1, host) as well as a dependency feature
ftd(−1, det). These two features will work together
to increase the probability of this correct link. In
contrast, the incorrect link(the1, les) will have only
ftd(+3, det), which will work to lower the link
probability, since most determiners are located be-

4The parent node in the dependency tree.



fore their governors.

3.3 Search

Due to our use of constraints, when seeking the
highest probability alignment, we cannot rely on a
method such as dynamic programming to (implic-
itly) search the entire alignment space. Instead, we
use a best-first search algorithm (with constant beam
and agenda size) to search our constrained space of
possible alignments. A state in this space is a par-
tial alignment. A transition is defined as the addi-
tion of a single link to the current state. Any link
which would create a state that does not violate any
constraint is considered to be a valid transition. Our
start state is the empty alignment, where all words in
E andF are linked to null. A terminal state is a state
in which no more links can be added without violat-
ing a constraint. Our goal is to find the terminal state
with highest probability.

For the purposes of our best-first search, non-
terminal states are evaluated according to a greedy
completion of the partial alignment. We build this
completion by adding valid links in the order of
their unmodified link probabilitiesP (l|e, f) until no
more links can be added. The score the state receives
is the probability of its greedy completion. These
completions are saved for later use (see Section 4.2).

4 Training

As was stated in Section 2, our probability model
needs an initial alignment in order to create its prob-
ability tables. Furthermore, to avoid having our
model learn mistakes and noise, it helps to train on a
set of possible alignments for each sentence, rather
than one Viterbi alignment. In the following sub-
sections we describe the creation of the initial align-
ments used for our experiments, as well as our sam-
pling method used in training.

4.1 Initial Alignment

We produce an initial alignment using the same al-
gorithm described in Section 3, except we maximize
summedφ2 link scores (Gale and Church, 1991),
rather than alignment probability. This produces a
reasonable one-to-one word alignment that we can
refine using our probability model.

4.2 Alignment Sampling

Our use of the one-to-one constraint and the cohe-
sion constraint precludes sampling directly from all
possible alignments. These constraints tie words in
such a way that the space of alignments cannot be
enumerated as in IBM models 1 and 2 (Brown et
al., 1993). Taking our lead from IBM models 3, 4
and 5, we will sample from the space of those high-
probability alignments that do not violate our con-
straints, and then redistribute our probability mass
among our sample.

At each search state in our alignment algorithm,
we consider a number of potential links, and select
between them using a heuristic completion of the re-
sulting state. Our sampleS of possible alignments
will be the most probable alignment, plus the greedy
completions of the states visited during search. It
is important to note that any sampling method that
concentrates on complete, valid and high probabil-
ity alignments will accomplish the same task.

When collecting the statistics needed to calcu-
late P (A|E,F ) from our initial φ2 alignment, we
give eachs ∈ S a uniform weight. This is rea-
sonable, as we have no probability estimates at this
point. When training from the alignments pro-
duced by our model, we normalizeP (s|E,F ) so
that

∑
s∈S P (s|E,F ) = 1. We then count links and

features inS according to these normalized proba-
bilities.

5 Experimental Results

We adopted the same evaluation methodology as in
(Och and Ney, 2000), which compared alignment
outputs with manually aligned sentences. Och and
Ney classify manual alignments into two categories:
Sure (S) and Possible (P ) (S⊆P ). They defined the
following metrics to evaluate an alignmentA:

recall= |A∩S|
|S| precision= |A∩P |

|P |

alignment error rate (AER)= 1− |A∩S|+|A∩P |
|S|+|A|

We trained our alignment program with the same
50K pairs of sentences as (Och and Ney, 2000) and
tested it on the same 500 manually aligned sen-
tences. Both the training and testing sentences are
from the Hansard corpus. We parsed the training



Table 2: Comparison with (Och and Ney, 2000)

Method Prec Rec AER
Ours 95.7 86.4 8.7
IBM-4 F→E 80.5 91.2 15.6
IBM-4 E→F 80.0 90.8 16.0
IBM-4 Intersect 95.7 85.6 9.0
IBM-4 Refined 85.9 92.3 11.7

and testing corpora with Minipar.5 We then ran the
training procedure in Section 4 for three iterations.

We conducted three experiments using this
methodology. The goal of the first experiment is to
compare the algorithm in Section 3 to a state-of-the-
art alignment system. The second will determine
the contributions of the features. The third experi-
ment aims to keep all factors constant except for the
model, in an attempt to determine its performance
when compared to an obvious alternative.

5.1 Comparison to state-of-the-art

Table 2 compares the results of our algorithm with
the results in (Och and Ney, 2000), where an HMM
model is used to bootstrap IBM Model 4. The rows
IBM-4 F→E and IBM-4 E→F are the results ob-
tained by IBM Model 4 when treating French as the
source and English as the target or vice versa. The
row IBM-4 Intersectshows the results obtained by
taking the intersection of the alignments produced
by IBM-4 E→F and IBM-4 F→E. The row IBM-4
Refinedshows results obtained by refining the inter-
section of alignments in order to increase recall.

Our algorithm achieved over 44% relative error
reduction when compared with IBM-4 used in ei-
ther direction and a 25% relative error rate reduc-
tion when compared withIBM-4 Refined. It also
achieved a slight relative error reduction when com-
pared withIBM-4 Intersect. This demonstrates that
we are competitive with the methods described in
(Och and Ney, 2000). In Table 2, one can see that
our algorithm is high precision, low recall. This was
expected as our algorithm uses the one-to-one con-
straint, which rules out many of the possible align-
ments present in the evaluation data.

5available at http://www.cs.ualberta.ca/l̃indek/minipar.htm

Table 3: Evaluation of Features

Algorithm Prec Rec AER
initial (φ2) 88.9 84.6 13.1
without features 93.7 84.8 10.5
with ftd only 95.6 85.4 9.3
with fta only 95.9 85.8 9.0
with fta andftd 95.7 86.4 8.7

5.2 Contributions of Features

Table 3 shows the contributions of features to our al-
gorithm’s performance. Theinitial (φ2) row is the
score for the algorithm (described in Section 4.1)
that generates our initial alignment. Thewithout fea-
turesrow shows the score after 3 iterations of refine-
ment with an empty feature set. Here we can see that
our model in its simplest form is capable of produc-
ing a significant improvement in alignment quality.
The rowswith ftd only andwith fta only describe
the scores after 3 iterations of training using only de-
pendency and adjacency features respectively. The
two features provide significant contributions, with
the adjacency feature being slightly more important.
The final row shows that both features can work to-
gether to create a greater improvement, despite the
independence assumptions made in Section 2.

5.3 Model Evaluation

Even though we have compared our algorithm to
alignments created using IBM statistical models, it
is not clear if our model is essential to our perfor-
mance. This experiment aims to determine if we
could have achieved similar results using the same
initial alignment and search algorithm with an alter-
native model.

Without using any features, our model is similar
to IBM’s Model 1, in that they both take into account
only the word types that participate in a given link.
IBM Model 1 usesP (f |e), the probability off be-
ing generated bye, while our model usesP (l|e, f),
the probability of a link existing betweene andf .
In this experiment, we set Model 1 translation prob-
abilities according to our initialφ2 alignment, sam-
pling as we described in Section 4.2. We then use the∏n

j=1 P (fj |eaj ) to evaluate candidate alignments in
a search that is otherwise identical to our algorithm.
We ran Model 1 refinement for three iterations and



Table 4:P (l|e, f) vs. P (f |e)

Algorithm Prec Rec AER
initial (φ2) 88.9 84.6 13.1
P (l|e, f) model 93.7 84.8 10.5
P (f |e) model 89.2 83.0 13.7

recorded the best results that it achieved.
It is clear from Table 4 that refining our initialφ2

alignment using IBM’s Model 1 is less effective than
using our model in the same manner. In fact, the
Model 1 refinement receives a lower score than our
initial alignment.

6 Related Work

6.1 Probability models

When viewed with no features, our proba-
bility model is most similar to the explicit
noise model defined in (Melamed, 2000). In
fact, Melamed defines a probability distribution
P (links(u, v)|cooc(u, v), λ+, λ−) which appears to
make our work redundant. However, this distribu-
tion refers to the probability that two word typesu
andv are linkedlinks(u, v) times in the entire cor-
pus. Our distributionP (l|e, f) refers to the proba-
bility of linking a specific co-occurrence of the word
tokense andf . In Melamed’s work, these probabil-
ities are used to compute a score based on a prob-
ability ratio. In our work, we use the probabilities
directly.

By far the most prominent probability models in
machine translation are the IBM models and their
extensions. When trying to determine whether two
words are aligned, the IBM models ask, “What is
the probability that this English word generated this
French word?” Our model asks instead, “If we are
given this English word and this French word, what
is the probability that they are linked?” The dis-
tinction is subtle, yet important, introducing many
differences. For example, in our model,E andF
are symmetrical. Furthermore, we modelP (l|e, f ′)
andP (l|e, f ′′) as unrelated values, whereas the IBM
model would associate them in the translation prob-
abilities t(f ′|e) and t(f ′′|e) through the constraint∑

f t(f |e) = 1. Unfortunately, by conditionalizing
on both words, we eliminate a large inductive bias.

This prevents us from starting with uniform proba-
bilities and estimating parameters with EM. This is
why we must supply the model with a noisy initial
alignment, while IBM can start from an unaligned
corpus.

In the IBM framework, when one needs the model
to take new information into account, one must cre-
ate an extended model which can base its parame-
ters on the previous model. In our model, new in-
formation can be incorporated modularly by adding
features. This makes our work similar to maximum
entropy-based machine translation methods, which
also employ modular features. Maximum entropy
can be used to improve IBM-style translation prob-
abilities by using features, such as improvements to
P (f |e) in (Berger et al., 1996). By the same token
we can use maximum entropy to improve our esti-
mates ofP (lk|eik , fjk

, Ck). We are currently inves-
tigating maximum entropy as an alternative to our
current feature model which assumes conditional in-
dependence among features.

6.2 Grammatical Constraints

There have been many recent proposals to leverage
syntactic data in word alignment. Methods such as
(Wu, 1997), (Alshawi et al., 2000) and (Lopez et al.,
2002) employ a synchronous parsing procedure to
constrain a statistical alignment. The work done in
(Yamada and Knight, 2001) measures statistics on
operations that transform a parse tree from one lan-
guage into another.

7 Future Work

The alignment algorithm described here is incapable
of creating alignments that are not one-to-one. The
model we describe, however is not limited in the
same manner. The model is currently capable of
creating many-to-one alignments so long as the null
probabilities of the words added on the “many” side
are less than the probabilities of the links that would
be created. Under the current implementation, the
training corpus is one-to-one, which gives our model
no opportunity to learn many-to-one alignments.

We are pursuing methods to create an extended
algorithm that can handle many-to-one alignments.
This would involve training from an initial align-
ment that allows for many-to-one links, such as one



of the IBM models. Features that are related to
multiple links should be added to our set of feature
types, to guide intelligent placement of such links.

8 Conclusion

We have presented a simple, flexible, statistical
model for computing the probability of an alignment
given a sentence pair. This model allows easy in-
tegration of context-specific features. Our experi-
ments show that this model can be an effective tool
for improving an existing word alignment.
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Igor A. Mel’čuk. 1987.Dependency syntax: theory and
practice. State University of New York Press, Albany.

Arul Menezes and Stephen D. Richardson. 2001. A best-
first alignment algorithm for automatic extraction of
transfer mappings from bilingual corpora. InProceed-
ings of the Workshop on Data-Driven Machine Trans-
lation.

Franz J. Och and Hermann Ney. 2000. Improved sta-
tistical alignment models. InProceedings of the 38th
Annual Meeting of the Association for Computational
Linguistics, pages 440–447, Hong Kong, China, Octo-
ber.

S. Vogel, H. Ney, and C. Tillmann. 1996. Hmm-based
word alignment in statistical translation. InProceed-
ings of COLING-96, pages 836–841, Copenhagen,
Denmark, August.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3):374–403.

Kenji Yamada and Kevin Knight. 2001. A syntax-based
statistical translation model. InMeeting of the Associ-
ation for Computational Linguistics, pages 523–530.


