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c. If Australia is a continent then Tasmania is an island.

d. If horses are reptiles then the moon is not a star.

e. If plastic isn't a mineral then phones are only ever made of clay.
£ Ifbridge is a board game then poker is not a card game.

Question Using the supplied abbreviations, translate the following
propositions into logical symbolism:

d Dante is the greatest poet m Marlowe died in a brawl
o ('Hara was run over by a dune- b The best poets die young
buggy

5 Shakespeare is the greatest poet ¢ Coleridge died happy

(i) If the best poets die young then Coleridge died happy.
(iij If Dante is the greatest poet then Shakespeare isn't.
{iii) If Marlowe didn't die in a brawl then 0"Hara was run over by a dune-
buggy.
(iv) If Coleridge didn't die happy then either Shakespeare or Dante is
the greatest poet.
{v) If O"Hara wasn't run over by a dune-bugey then either Dante is not
the greatest poet or if Marlowe died in a brawl then the best poets
die young.

Our exposition of the propositional connectives and, or, not and if... then has
revealed that their truth-functional definitions are quite often counter-
intuitive and unnatural, failing to correspond to the norms of ordinary
English. None of the operators corresponds perfectly with any English
equivalent (see Bach 2002 for further discussion). The discontinuity
between natural language and and & has already been discussed in
Chapter 4 (see 4.3.1); another example of the discontinuity between natu-
ral language and logical operators is provided by negation: given princi-
ples which we have not made fully explicit here but which are reasonably
obvious, two negatives cancel each other out, giving a positive statement.
Thus, the proposition - -p is logically equivalent to p. This logical princi-
ple is well understood by educated speakers of English, who regularly
avoid the use of double negatives like those in (24):

(24) He didn’t say nothing
Are you going to spend your whole life not trusting nobody?
Nobody here didn’t point no gun at nobody (Huddleston and Pallum
2002: 846, adapted)
It ain’t no way no girl can’t wear no platforms o ne amusement park
(Baugh 1983: 83, cited in Martinez 2003: 480)

Constructions like this were once common in English; their decline only
started in the seventeenth century (Martinez 2003: 478). The prescriptive



6.3 Logic as representation and perfection of meaning

187

grammatical tradition of English has proscribed the use of such double
negatives for hundreds of years; nevertheless, the double negative contin-
ues to thrive ‘as a regular and widespread feature of non-standard dialects
of English across the world® (Huddleston and Pollum 2002 847).
Furthermore, in many languages, such as Spanish (25a). Italian (25b),
Portuguese (25c) and Ancient Greek (25d). double negatives regularly per-
form a reinforcing, rather than a cancelling function:

(25) a. No vino  fadie
not came noone
‘Mo one came” (Martinez 2003: 477)

b. Giovanni  non  vide nessuno
Giovanni not saw no one
‘“Giovanni didn't see anyone’ (Martinez 2003: 477)

c. Nido wviste nada?
not saw nothing
‘Didn’t you see anything? (Martinez 2003: 477)

d. ouk ara... gignosketai on eidan ouden
not then isknown ofthe forms nothing
‘Of the forms then nothing is known' (Plato, Farmemides 134b,
cited by Horrocks 1997 274)

Another particularly flagrant example of discontinuity between the
operators and natural language is provided by the material conditional;
indeed. the correspondence between = and ordinary language has been a
matter of philosophical controversy since the time of Stoic logicians in
antiquity. Case (d) of the truth table is the most problematic, since it
means that a statement is automatically true where the antecedent is
false and the consequent is true. But this seems to fly in the face of our
intuitions about ordinary language. To borrow Girle's example (2002:
240), why should it be automatically true that If Henry VII was a bachelor
then he was King of England? As Girle comments (2002: 240), many people
‘would want to say that it's very difficult to say whether it's true or false.
To say it's automatically true is too much.” The truth-functional definition
of = therefore seems not at all accurate as a representation of the mean-
ing of English if...then. This is not a peculiarity of English: conditional
expressions in other languages seem to be like English. and unlike ~, in
this respect.

We will see more examples of discrepancies between logic and ordinary
language later in the chapter. and logicians have expended considerable
effort to reconcile the two. The theory of conversational implicature devel-
oped by Grice, discussed in 4.3, is one such attempt. This theory leaves the
truth-functional definitions of the operators intact, but there have been
other attempts to amend the truth tables in order to bring the meanings
of the operators into line with their natural language equivalents. For rea-
sons that go beyvond the scope of this chapter, however, no one satisfactory
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way of doing this has ever gained wide acceptance: it would seem that we
are stuck with the operators in their current state.

The clash between the meanings of the logical operators and their ordi-
nary language equivalents reveals a contrast between two different inter-
pretations of the nature of logic: logic as a representation and logic as a
perfection of meaning. The two construals carry very different implica-
tions for the relevance of logic to linguistic semantics. According to the
first view of logic, the truth-functional definitions of logical operators like
=, &, % and = represent fundamental categories of human thought, and,
as such, underlie the meanings of natural language at a certain degree of
abstraction. Even though actual natural languages typically do not con-
tain words whose meanings correspond to those of the logical operators,
this does not mean that the logical operators are not representative of the
meanings relevant to the analysis of natural language, nor that logic as a
whole has nothing to do with the study of natural language. For McCawley
(1981), for example, there is no clash between logic and linguistics: the
two disciplines share a subject matter: meaning. Many linguists, indeed,
would maintain that discontinuities between natural language and logic
like those discussed in this section are to be explained by the fact that
natural languages possess a pragmatic dimension which prevents the
logical operators from finding exact eguivalents in ordinary discourse.
The fact that logical notions like -, &, »/ and 2 are not transparently
reflected in natural language is in itself no reason to doubt their impor-
tance as fundamental primitives of meaning, any more than the fact that
people cannot draw freehand circles means that we do not have a concept
CIRCIE. ‘Formal’ semantic theories in linguistics assume precisely that
the principles of logic form part of a viable model of natural language
meaning.

According to the second view of the relation of logic to natural lan-
guage, logic does not distil principles already present in natural language,
but transcends and perfects natural language. While logical principles
may reveal the fundamental workings of thought, their utility lies pre-
cisely in that they allow us to escape the inadeguacies of ordinary lan-
guage. For Grice (1989), the fact that discrepancies exist between logical
operators and their natural language equivalents ‘is to be regarded as an
imperfection of natural languages™: the natural language expressions cor-
responding (imperfectly) to the logical operators ‘cannot be regarded as
finally acceptable, and may turn out to be, finally, not fully intelligible®
(1989; 23). Natural language is not, therefore, to be appealed to in logical
investigation, and the validity of logic has nothing to do with whether it
turns out to be useful as a representation of natural language meaning.

This second view is appealing to logicians who see the principal pur-
pose of logic as being to provide a solid basis for accurate reasoning of the
sort regquired by science. Wittgenstein sums up this point of view when he
says that ‘the crystalline purity of logic was of course not a result of inves-
tigation; it was a reguirement’ (1953: §107): in other words, the value of
logic is precisely that it takes us bevond the imperfections of natural lan-
guage, allowing us to discern logical structures which the messiness of
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natural language obscures. As Barwise and Perry comment (1983: 28), the
principal concern of the founders of modern logic - Frege, Russell and
Whitehead, Gddel, and Tarski — was to provide a sure footing for the study
of mathematics, and hence of science. This meant that logical investiga-
tion was in fact often oriented away ffom natural language, embodying
assumptions designed to put mathematical notions on a sound footing,
which have made it ‘increasingly difficult to adapt the ideas of standard
maodel theory to the semantics of natural languages'.
We will take up this gquestion again at the end of the chapter.

Consider the following argument:

(26) 1. All primates are hairy.
2. Koko is a primate.
therefore
3. Koko is hairy.

This argument is clearly valid. But notice that using the propositional
symbols we have introduced so far, we cannot demonsirate this validity.
The two premises and the conclusion of (26) each express different propo-
sitions. We have no way, in our existing symbolism, of showing that these
propositions involve the recurrent elements Eoko, primate and hairy. As
things stand, we can only assign a different letter variable to each of the
propositions. giving us the following symbolism for the argument:

(27) 1. All primates are hairy. p

2. Koko is a primate. q
therefore
3. Koko is hairy. r

The logical form “p, g, therefore r” is thus the only way we have in proposi-
tional logic to symbolize the structure of the argument. But, in itself, this
logical form is invalid. To see this, recall that p, 4, and r can refer to any
proposition; thus (28) is equally an instance of an argument with the form
P, g, therefore r:

(28) 1. Henry Darger created a beautiful and violent fantasy world. p

2. India is smaller than Africa. g
therefore
3. Thinking is the soul's conversation with itself. r

Clearly, wherever the validity of |27) comes from, it does not derive from its
conformity to the logical form p, g therefore r; as demonstrated by (28), not
all arguments of this form are valid. Instead. the validity of (27) springs
principally from the meaning of the term all. In order to symbolize (27) in a
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way that makes its validity clear, we will need to go beyond a purely propo-
sitional notation 50 that the idea of “all” can be captured in a logically
TigOTOUs Way.

Mow consider the argument in (29):

(29} Some things can only be seen when they move;

therefore
if nothing moves, there are things which can’t be seen. (Ruyer 1998: 101)

Propositionally, this argument has the form p, therefore (g = r): again, a
clearly invalid argument form. Yet (29) is obviously valid. and its validity
derives from the meaning of the term some. In order to symbolize the
validity of arguments like (29). we therefore also need some way of captur-
ing the idea of ‘some’.

‘Some” and “all’ are the basic notions in the other branch of logic with
which we will be concerned in this chapter. This branch is predicate logic,
also known as quantificational or first-order logic. What exactly are
predicates? Let’s examine (27) again. From a logical point of view. (27)
contains three basic types of term: terms referring to individuals, such as
Koko, terms referring to quantities, like afl, and general terms like primate
and hairy. Terms referring to individuals are called singular terms or
individual constants. We will symbolize them with lower case letters.
Koko, for instance, can be symbolized simply by k. Terms referring to quan-
tities like ‘all” or *some” are called gquantifiers: we will introduce the sym-
bols for them presently.

‘Primate’ and “hairy’ in (27) are predicates. ‘Predicate’ has rather a dif-
ferent meaning in logic from the meaning it typically has in syntax. In
syntax, ‘predicate’ is often roughly synonymous with “verb'. In logic, how-
ever, predicates are terms which represent properties or relations: here,
the properties of ‘primateness’ and ‘hairiness’. A logical predicate could
thus be a general noun like primate. an adjective like hairy or a verb like
adore in Koko adores the news. Whereas singular terms refer to specific indi-
viduals. predicates refer to general terms, terms which are potentially
true of numerous individuals. Being a primate and being hairy are proper-
ties which any number of individuals can hold. By contrast, the term Eoko
picks out just a single individual. The properties and relations expressed
by predicates can be quite complex and lengthy. For instance, as well as “is
hairy” and ‘is a primate’, the expressions ‘is a good student’, ‘is taller than
the Eiffel tower’, “loves skiing” and ‘bought a book on the giant sloth from
Amazon” are all predicates. We will discuss these different types of predi-
cate below.

Predicates are typically symbolized by single capital letters. The predi-
cate ‘is a primate’, for example, could be symbolized F, and the predicate
‘is hairy’ by H. When expressions containing predicates and singular
terms are translated into logical notation, the capitalized predicate sym-
bol is written first, followed by the symbol for the singular term to which
the predicate applies. Thus, we can translate the expressions ‘Koko is a
primate’ and ‘Koko is hairy” as follows:
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(30) Koko is a primate Pk
Eoko is hairy Hk

The individual a predicate applies to is called its argument: F and H in (30) each
have a single argument. But this notation will only get us a certain way.
Eventually, we want to be able to translate propositions like ‘All primates are
hairy”. To do this, we need to examine quantifiers. Quantifiers are the logical
expressions ‘some” and ‘all’, symbolized by the operators 3 and V respectively.

Inferences which, like (27) and (29), involve the notions of ‘some” and
‘all” are very common. Examine the following formula:

(31) (Vx) Px

(31} reads as ‘For every x, x is a primate’. What this says is that every indi-
vidual in the domain in question is a primate. (31} is thus the translation
of ‘Everything is a primate” (an obviously false statement). Compare this to
(32):

(32) (3x) Px

This reads as ‘there exists at least one x, such that x is a primate’. This says
that something (or someone) is a primate — an obviously true statement.

¥ is known as the universal quantifier. Universal quantification is the
logical operation which says that a predicate is true of every entity in the
domain under discussion. Including ¥ in a formula thus applies the predi-
cate to every entity (argument) in the domain in question. In English, uni-
versal quantification can be expressed by the words all and every, and the
phrases each and every and everything.

d is known as the existential quantifier. Existential quantification is
the logical operation which says that a predicate is true of at least one
entity in the domain under discussion. Including 3 in a formula applies a
predicate to at least one entity (argument) in the domain in question. In
English, existential quantification can be expressed by the words some, at
least one, and something.

The guantifiers can be combined with the propositional operators.
Some examples of this are given below. In (33), the abbreviation § stands
fior ‘is simple’, and F stands for “is fun’.

{33) {3x) Sx & Fx at least one thing is simple and fun
(Jx) Sx X-01 Fx at least one thing is either simple or fun, but not
both
(Ix) -Fx something is not fun
(Jx) -5x & -Fx something is not simple and not fun
—i3x) Fx it’s not the case that there is at least one thing that is fun
(Le., nothing is fumn)

(¥x) Sx & Fx everything is simple and fun

(Wx) Sx %-0R Fx everything is either simple or fun, but not both
(¥x) -Fx everything is not fun (i.e., nothing is fun)

(¥x) -5x & -Fx everything is not simple and not fun
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The most interesting combinations, however, result from the use of 2.
Consider the following formula in conjunction with the explanations of
the symbals:

(34) P 'is a primate’
H ‘is hairy’
{¥x) Px 2 Hx
This says that for all x's, if x is a primate then it is hairy. This allows us to

give the following translation of the argument in (27), with the justifica-
tion for the steps shown at the right (k = Koko)

(35) 1. (Wx)Px Hx  premise

4Pk Premise
therefore
3. Hk by 1.

“To be hairy” and ‘to be a primate” are one place predicates: this means
that they can only be associated with a single individual constant at a
time. (Recall that individual constants, or singular terms, are terms refer-
ring to a single individual. Individual constants are sometimes known as
variables.) For example, the sentence ‘Koko and Wilma are primates’ can
only be expressed logically as (36a), not as (36b).

i36) a. Pk & Pw.
b. Pk, w

The formula in (36b) is ill-formed. Since the property of being a primate
only ever involves a single individual at a time, one of the constants in
(36D) is left *floating™: it is not attached to any predicate, and nothing
{even existence) is asserted of it

Mot all predicates are oneplace predicates. The predicate ‘admire’, for
example, is a two-place predicate: if admiring is going on, then two par-
ticipants are necessarily involved, the admirer and the admiree. Using A
for ‘admire’, we can express the sentence ‘Dietmar admires Horst" as (37)
and ‘Horst admires Dietmar® as (38):

(37) Ad. h
(38) Ah, d

A twoplace predicate can thus be interpreted as indicating a set of
ordered pairs of individuals: here, the pair Dietmar and Horst. It is a set
of ordered pairs precisely because the order in which the individuals occur
is crucial: the first individual is the one who admires, the second the one
who is admired.

There is mo limit on the number of places a predicate may have. “Give’
is an example of a three-place predicate, as in G d, b, h ‘Dietmar gave the
book to Horst™.

We have been defining ‘predicate’ as a general term expressing a property
or a relation. But we may also think of predicates in terms of the individuals
to which they apply. Thus, a one-place predicate may be interpreted as a set
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of individuals: those individuals to which the predicate applies (these are
sometimes referred to as the individuals that ‘satisfy” the predicate). A
two-place predicate applies to an ordered pair of individuals, a three-place
predicate to an ordered triple of individuals, and so on. Accordingly, a
predicate can have as many places as the members of the ordered n-tuple
of individuals that satisfy it.

We are now in a position to be able to produce translations into logical
notation of some reasonably complex propositions. These examples
imvolve one- and two-place predicates. and show how the propositional
operators are used with them. We first give the logical formula, then a
translation into logiceeze’, then a translation into idiomatic English.

{39) a. (V) Fx 2 Sx (5 = is simple; F = is fun)
For every x, if x is fun then x is simple
Everything fun is simple.

b. - 3x) 5x & Fx (5 = is simple; F = is fun)
It is not the case that there is at least one x such that x is simple
and x is fun.

Mothing is simple and fun.

c (Vx)Tx, 1 2 Rx, x (T = trusts, B = respects; 1= Lucy)
For every x, if x trusts Lucy then x respects x.
Everyone who trusts Lucy respects themselves.

d (Vx)Fx 2> H (F = is fun; | = linguistics)
For every x, if x is fun then linguistics is fun.
If anything is fun then linguistics is fun

e. (Vx) (5x & -Bx) D Hx (5 =is a student; B = is bald; H = is hilarious)
For every x, if x is a student and x is not bald, then x is hilarious.
All students who are not bald are hilarious.

f. (3x) 5x & (Bx v Lx) (5 = is a student; B = is studying ballet; L =is
studying linguistics)
There is at least one x such that x is a student and x is studying
ballet or x is studying linguistics.
There is a student who is studying ballet or studying linguistics,
orf both.

g2 (¥x) (Vx & Ix) O Ux (V = is a virtue; [ = is interesting; U = is useful)
For every x, if x is a virtue and x is interesting. then x is useful
All interesting virtues are useful.

h. (¥x)(Ix & Sx) = -Gx (L= is liguid; 5 = is a substance; G = is a gas)
For every x, if x is a liquid and x is a substance then x is not a gas
Liquid substances are not gases.

i. (¥x) Vx 2 =lx v Ux) (V= is a virtue; [ = is interesting; U = is useful)
For every X, if x is a virtue, then it is not the case that x is inter-
esting or X is useful.
No virtue is interesting or useful.
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Mote that the last example could also be translated as follows

(40) ~(3x) (Vx & (Ix 1 Ux))
It is not the case that there is at least one x. such that x is a virtue
and x is interesting or useful.
Mo virtue is interesting or useful.

The examples given so far involve only a single quantifier. But natural lan-
guage frequently expresses propositions involving multiple quantification,
ie. expressions which refer to two or more quantities. A two-place predicate,
for example, may be quantified in various different ways, some of which we
will now illustrate with the two-place predicate K ‘remember”.

The simplest case of multiple quantification is where both variables
have the same guantifier:

{41) (¥x)(Vy)Rx,y (R =remembers)
For every x and for every v it is true that x remembers v.
Everyone remembers everyone.
(Jx) (Fy) Bx. ¥
There is at least one x and at least one v such that x remembers y.
Someone remembers someone.

Mote that this formula would be valid in the case where someone remem-
bers themselves.

More complex are cases where one variable receives universal quantifi-
cation and the other existential. Consider the following example:

{42) (Fx) (¥y) Rx, ¥
There is at least one x such that for every v, x remembers y.
Someone remembers everyone.

Here we will say that Y'v is in the scope of 3x. Let's now consider what
happens if we swap the order of the individual variables:

{43) (Jv) (Vx) Rx, y
There is at least one v such that for every x, X remembers v.
Someone is remembered by everyone.

Here, ¥x is in the scope of Jy. The contrast between (42) and (43) is the
difference between an active (42) and a passive (43) sentence. Importantly,
the order of the variables in (43) is crucial: (43) is not logically equivalent
to (44), which expresses a quite different proposition:

{44) (Vx) (Jy) Rx. ¥
For every x, there is at least one v such that x remembers v.

Everyone remembers someone.

The difference between (423) and (44) is subtle but real. (43) says that there
is at least one single individual whom evervone remembers. It is the same
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individual who is remembered by everyone: in a universe consisting of
Nina. Andrew, Tom, Harry and Briony. Tom might be remembered by
Nina. Andrew, Harry and Briony. {44). by contrast, says that every person
remembers at least one person. This single person remembered by eve-
rybody may well differ from person to person: Briony may remember
Harry, Nina may remember Andrew, Andrew may remember Tom. In
(44), the existential quantifier is said to be in the scope of the universal
quantifier.

To take another example of scope differences, consider the two-place
predicate F “is the father of " in the following two propositions (see Allwood
et al. 197 7: 67 for discussion):

{45) (Vy) (3x) Fx, y
For every vy, there is an x such that x is the father of y.

Evervone has a father.

{46) (3x) (Vy) Fx. y.
There is at least one x, such that for every y, x is the father of v.
Someone is the father of everyone.

The first proposition, (45), is true, the second, (46), is not. Yet the differ-
ence between them consists solely in the order of the existential and
universal quantifier, and the consequent scope differences between the
Cwo.

Predicate logic notation can be used to precisely represent ambiguities
in natural language. Sentence (47a), for example, has, among other read-
ings, (47b) and (47c):

(47) a. Everyone here works for two companies.
b. Everyone works for the same two companies.
c. Everyone works for two companies, which may or may not be the
same.

We can represent this difference concisely using the constant p for a per-
son and ¢ for a pair of companies, and the predicate W “work for”:

(48) a. (3c) (Vp)Wp. c
There is at least one pair of companies ¢, such that for every
person p, p works for ©
Everyone works for the same two companies.

b. (¥p)(Fc)Wp. ¢
For every person p, there is at least one pair of companies ¢ such
that p works for c. Everyone works for two companies (which
may or may not be the same).

QUESTION Using the abbreviations supplied, (i) translate the following
logical formulae into idiomatic English:

P isapoet N is a novelist
T is talented W is a prize winner
5 is asimpleton
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L (dx) Px & Tx

2. (Vx) Px O 8x

3. (Vx)(Px & Wx) 2D Tx

4, (3x) Nx & Px

and (ii) translate the following propositions into logical symbolism:

a. Mo ralented novelist is a simpleton.

b. At least one prize-winner is neither talented nor a simpleton.
c. Simpletons are not prize-winners.

d. No talented simpleton is a prize-winning poet.

For logical approaches to semantics, reference and truth are the principal
semantic facts: the most important thing about the meaning of a word
is what it refers to, and the most important thing about a sentence is
whether or not it is true - whether or not things are as the sentence
says they are. Meaning for a logical approach to semantics is thus prin-
cipally truth-conditional (see 3.2.1). As discussed in Chapter 3, for a
truth-conditional theory of meaning, knowing the meaning of a factual
sentence is the same as knowing what the world would have to be like for
that sentence to be true. This does not mean that truth conditions are all
there is to meaning. It just means that, as Chierchia and MoConnellGinet
(2000: 72) put it, ‘if we ignore the conditions under which 5 [a sentence] is
true, we cannot claim to know the meaning of 8. Thus, knowing the truth
conditions for 5 is at least necessary for knowing the meaning of 8.

Logical approaches to semantics deal with the question of truth and
reference by providing a model for the sets of logical formulae used to
represent meaning. The model of a set of logical formulae is a description
of a possible world to which the formulae refer, a set of statements show-
ing what each individual constant and predicate refers to in some possible
world. The model relates the logical language to this world, by assigning
referents to each logical expression. The aim of this is ultimately to pro-
duce, for a given set of referents, a statement of the truth values of the
logical formulae in which they are included. In other words, the logical
formalism will tell us, given a particular world, which sentences describ-
ing this world are false and which are true. Given the assumption of the
centrality of truth to meaning, this is an important part of describing the
meanings of a language. If the logical formulae are identified with sen-
tences of natural language, we will have obtained a logical characteriza-
tion of the truth conditions of a subset of natural language. We will see a
simple example of such a truth-value assignment below.

The referent of a logical expression is called its extension. We will con-
sider the extension of both individual constants (singular terms) and of
predicates. The extension of an individual constant is simply the individ-
ual entity which the constant picks out or refers to in the world. In a
universe consisting simply of Tom, Dick, Harry and Jemima, the individ-
ual constants f, 4, h and j have the following extensions:



