
comprehensive art ic les

2011 December  •  Vol. 2  •  No. 4    acm Inroads    59

	 Fifty	Years	of	
Automata	
	 	 	 Simulation:
	 A	Review

  •  Pinaki Chakraborty  •  P.C. Saxena  •  C.P. Katti  •  

Automata theory is an important subject in computer science and quite consequently, simulation of automata 
for pedagogical purposes is an important topic in computer science education research. This article reviews 

the major initiatives in the field of simulation of automata in the last five decades with emphasis on those automata 
simulators actually used at universities for teaching. A classification of the automata simulators on the basis of their 
design paradigms has been developed where they have been classified broadly into language based automata simulators 
and visualization centric automata simulators. Some salient trends in the research on simulation of automata are also 
identified. The article concludes with an advocacy for continuing research on simulation of automata and integration 
of automata simulators in teaching.

INTRODUCTION
Automata theory has evolved over the last 
several decades as an important foundation of 
computer science. Today, every curriculum on 
computer science contains at least one course 
on automata theory. We know automata theory 

for its formal representations of computing systems and processes. 
Consequently, the principles of automata theory are routinely ap-
plied in various fields of computer science. While research on new-
er and advanced forms of automata is in progress, the basic forms 
of automata continue to hold an important place in the computer 
science curricula.

Educationists were early to understand that it is difficult to 
teach and learn automata theory. They thought that perhaps the 
best way to teach and learn automata theory is to take help of peda-
gogical tools. Since automata theory revolves around abstract ma-
chines and processes, automata simulators were conceived as the 
most common form of pedagogical tools on automata theory. The 
proliferation of electronic computers in academia helped the cause 
of the educationists as they started developing automata simulators 
in the early 1960s [1]. This article reviews major automata simula-
tion projects undertaken in the last five decades to simulate the 
basic forms of automata, viz. finite automata, finite transducers, 
pushdown automata and Turing machines.



comprehensive art ic les

Fifty Years of Automata Simulation: A Review

60    acm Inroads    2011 December  •  Vol. 2  •  No. 4

first compiled into an intermediate language. The compiler makes 
sure that the program is error free. Then an interpreter is used to 
simulate the working of the automaton for an arbitrary input string. 
Various tools, as those to display transition diagrams and convert 
an automaton into another form, may also use the intermediate 
program. In the second method, the program is simulated directly 
by the interpreter. The interpreter has to perform lexical and syntax 
analyses itself, and it is also responsible for error handling. The 
symbolic languages accepted by the automata simulators are of dif-
ferent types as discussed in subsections 2.1 to 2.4.

2.1  Notational Language Based Automata 
Simulators

In a notational language, an automaton is defined using formal 
symbols. The symbols are typically short and there are strict limita-
tions on the choice of the symbols. A rigid structure is enforced on 
the programs often using space and newline characters. Notational 
languages characteristically do not provide any construct for data 
abstraction or flow control. Notational languages are easy to learn 
and we can use them efficiently to define simple automata. Conse-
quently, several researchers have endorsed the notational language 
based approach of automata simulation.

In what was perhaps the first study on automata simulators, 
Coffin et al. [1] developed a software tool based on a notational 
language to simulate Turing machines. In this language, a Turing 
machine is represented by a series of quintuples each denoting 
a transition. A translator program, called the builder, transforms 
the quintuples into their machine language equivalents. Then 
another program, called the driver, simulates the working of the 
Turing machine. The tool executed on an SDS 920 machine and 
it achieved satisfactory performance. The developers observed 
that the tool is useful for problem solving, algorithm validation 
and most importantly teaching students the fundamentals of 
programming.

With the emergence of so many automata simulators over the 
years, their classification has become necessary. Chesñevar, et al. 
[2] have earlier classified simulators and other pedagogical tools on 
automata theory into tools that support only one form of automata 
and tools that support multiple forms of automata. We present a 
more elaborate classification of automata simulators (Figure 1). 
Automata simulators can be classified based on their design para-
digms into language based automata simulators and visualization 
centric automata simulators. In a language based automata sim-
ulator, the definition of an automaton is written in a predefined 
symbolic language and processed using tools like compilers and 
interpreters. We can further classify the language based automata 
simulators into notational language based automata simulators, 
assembly-like language based automata simulators, procedural lan-
guage based automata simulators, and descriptive language based 
automata simulators. Alternatively, a visualization centric automata 
simulator accepts the specification of an automaton and graphically 
simulates its working. We can further classify the visualization cen-
tric automata simulators into those accepting structured inputs and 
those accepting diagrammatic inputs.

The rest of this article is organized as follows. Section 2 reviews 
the language based automata simulators. Section 3 reviews the 
visualization centric automata simulators. Section 4 tries to identify 
the trends in research on simulation of automata, and Section 5 
concludes the discussion.

LANGUAGE BASED AUTOMATA 
SIMULATORS
The language-based approach is the older 
among the two basic approaches of simulating 
automata. To use a language based automata 
simulator, the definition of an automaton is 

written as a program in a symbolic language. There are two meth-
ods of processing this program. In the first method, the program is 

Figure 1: A classification of automata simulators



comprehensive art ic les

2011 December  •  Vol. 2  •  No. 4    acm Inroads    61

Head [3] has developed A Simple Simulator for State Transi-
tions. It is a suite comprising of a Finite State Machine Simu-
lator, a Nondeterministic Pushdown Automaton Simulator and 
a Turing Machine Simulator. The simulators are based on nota-
tional languages with rigid formats enforced by space and newline 
characters. The Finite State Machine Simulator (Figure 2) and the 
Nondeterministic Pushdown Automaton Simulator support both 
deterministic and nondeterministic automata. The Turing Ma-
chine Simulator supports Turing machines with semi-infinite or 
infinite tapes, multiple tapes and multi-track tapes. The simulators 
are available in four different versions, viz. graphical, short text 
only, full text only and course grader’s quick to use (batch). The 
graphical versions are well developed and interactive. The simula-
tion can be performed either stepwise or continuously at different 
speeds. Moreover, there is also an option for reverse simulation.

Harris [4,5,6] developed a suite of tools to simulate finite au-
tomata, pushdown automata and Turing machines based on nota-
tional languages. In these languages, automata are represented as a 
series of tuples each of which represents a transition. The tools are 
interactive and use high quality graphics. The tool suite strives to 
teach declarative programming and hence supports both determin-
istic and nondeterministic automata.

Shelburne [7] has developed a Nondeterministic Pushdown Au-
tomata Simulator and a Turing Machine Simulator for teaching a 
course on the theory of computation at the University of Witten-
berg. Both simulators are based on notational languages. The de-
scription of a pushdown automata or a Turing machine consists of a 
series of quintuples each denoting a transition (Figure 3). Both sim-
ulators are available with suitably developed integrated development 
environments, which allow creation, modification and simulation of 
automata. One can perform a simulation stepwise or instantaneously. 
While simulating a nondeterministic pushdown automaton, the user 
needs to specify which transition to use whenever there are mul-
tiple options. While simulating a Turing machine, the R/W head 
can move to a position left or right, or stay at the same position dur-
ing a transition. The stack used for simulating pushdown automata 
is restricted to 75 characters and the tape used to simulate Turing 
machines is restricted to 1000 characters on either side of the central 

position. The simulators have been developed for the MS DOS plat-
form and feature professional grade interactive graphics.

Scott [8] developed a Turing machine simulator and used it in 
an introductory course on computer science at the University of 
Northern Colorado. The simulator takes as input the description of 
a Turing machine in a notational language and simulates its work-
ings. The description of a Turing machine comprises of a series of 
tuples each representing a transition.

In a recent study, Erlacher [9] developed a Pushdown Autom-
ata Simulator. The simulator takes as input the description of a 
pushdown automaton in a notational language. The programs fol-
low a rigid format enforced using commas and semicolons. A lexer 
and a parser verify the correctness of the program. The simulator 
has a graphics based interactive interface for creating, modifying 
and simulating pushdown automata. During simulation, options 
for moving a single step forward or backward, resetting and com-
pleting instantaneously are available. The simulator supports both 
deterministic and nondeterministic automata. While simulating a 
nondeterministic automaton, options to select transitions manually 
or automatically are available. The simulator also supports conver-
sions between pushdown automata that accept by empty stack and 
pushdown automata that accept by final states.

2.2  Assembly-like Language Based Automata 
Simulators

The behavior of an automaton can be expressed as a program in the 
assembly language of a hypothetical machine. Such a program consists 
of simple instructions like those of a typical assembly language. Flow 
of execution is controlled using conditional and unconditional jump, 
subroutine call and return instructions. However, there is no construct 
for data abstraction. Assembly languages are more efficient than nota-
tional languages in defining large and complicated automata.

In an early study, Curtis [10] developed a Turing Machine Sim-
ulator, which was used as a tool for teaching and research at the 
Wesleyan University. The simulator is based on an assembly-like 
language that provides a basic set of instructions to read and write 
the tape contents, move left and right on the tape, jump condition-
ally and unconditionally, and invoke subroutines. The simulator 

Q0,a,A,Q1,R)
(Q1,a,a,Q1,R)
(Q1,B,B,Q1,R)
(Q1,b,B,Q2,R)
(Q2,b,b,Q2,R)
(Q2,C,C,Q2,R)
(Q2,c,C,Q3,L)
(Q3,a,a,Q3,L)
(Q3,b,b,Q3,L)
(Q3,c,c,Q3,L)
(Q3,A,A,Q3,L)
(Q3,B,B,Q3,L)
(Q3,C,C,Q3,L)
(Q3, , ,Q4,R)
(Q4,a,A,Q1,R)
(Q4,A,A,Q4,R)
(Q4,B,B,Q4,R)
(Q4,C,C,Q4,R)
(Q4, , ,Q5,R)

Figure 3: Definition of a Turing 
machine for Turing Machine 
Simulator. The Turing machine 
accepts the language  
{anbncn | n>0}. (The same 
example has been used 
throughout this paper to 
illustrate the designing of  
Turing machine by various 
tools)

DFA//Type
DIV5//Title
0 1//Input alphabet
qi q0 q1 q2 q3 q4//States
qi//Initial state
q0//Final state
qi 0 q0//Transitions
qi 1 q1
q0 0 q0
q0 1 q1
q1 0 q2
q1 1 q3
q2 0 q4
q2 1 q0
q3 0 q1
q3 1 q2
q4 0 q3
q4 1 q4
end

Figure 2: Definition of a 
deterministic finite automaton 
for A Simple Simulator for State 
Transitions. The deterministic 
finite automaton accepts all 
binary numbers whose decimal 
equivalents are divisible by 5. 
(The same example has been 
used throughout this paper 
to illustrate the designing of 
deterministic finite automaton 
by various tools)



comprehensive art ic les

Fifty Years of Automata Simulation: A Review

62    acm Inroads    2011 December  •  Vol. 2  •  No. 4

tomata. In this language, the description of a finite automaton is writ-
ten in a formal textbook-like way (Figure 4). A finite automaton mod-
eled in this language is compiled by using a fast single-pass compiler. 
The compiler consists of four phases, viz. lexical analyzer, syntax ana-
lyzer, semantic analyzer and code generator. Then a suitably designed 
interpreter simulates the working of the compiled finite automaton. 

A tool to display the transition diagram of the compiled fi-
nite automaton is also available (Figure 5). Additionally, tools to 
convert a nondeterministic finite automaton into a deterministic 
finite automaton and a deterministic finite automaton into a Tur-
ing machine are available. A two-pass optimizing compiler is also 
available but only for deterministic finite automata. It minimizes 
the number of states in the deterministic finite automata and it 
also uses other techniques to make the object programs shorter and 
faster. The optimizing compiler has a code optimizing phase apart 
from the four phases of its non-optimizing counterpart. 

consists of a two-pass loader, one pass to set up symbol tables and 
another to load the instructions, a module to load the tape and a 
module to interpret the instructions. The simulator executed on 
an IBM 1620 machine. The results obtained from experiments on 
universal Turing machines have been encouraging.

In another study, Rose et al. [11] defined an assembly-like lan-
guage to model automata. The language consists of twenty-six 
primitive instructions to read and write, manipulate registers, push 
and pop, and jump conditionally and unconditionally. One can use 
the language to model finite automata, pushdown automata, and 
other abstract machines. An interpreter of this language, called 
Automata, consisting of a parser and an executer was developed. 
The parser first reads and recognizes the definition of an abstract 
machine. Then the executer is invoked to simulate the working of 
the abstract machine. The language and its interpreter have been 
used as a teaching aid at the Pennsylvania State University. Students 
and professors have appreciated this approach to teaching. We also 
observed that the use of this approach results in better insight into 
the operational nature of the abstract machine among the students.

Pierce et al. [12] presented a Turing machine simulator called 
Tutor. The simulator takes as input the definition of a Turing ma-
chine in an assembly-like language. The language has seventeen 
predefined basic machines that combine to obtain Turing machines 
of any size and complexity. The simulator executed on an IBM 
System/360 machine and found to be quite fast with the basic ma-
chines requiring 8 to 50 µs to execute.

2.3  Procedural Language Based Automata 
Simulators

Suitably designed procedural languages can also be used to define 
automata. Such a procedural language provides various high-level 
language features for data abstraction and flow control. Procedural 
languages are inherently more powerful than assembly languages and 
can be best used to define automata of very large size and complexity.

Knuth and Bigelow [13] demonstrated that the techniques used 
in programming real computers could also apply to construct pro-
grams for automata. They defined a procedural language for mod-
eling stack automata, a generalized form of pushdown automata; 
they also showed how it could be easily adapt for other forms of 
automata. The definition of an automaton in this language con-
sists of different types of statements such as conditional statements, 
jump statements, procedure statements, and accept statements. 
The programs in this language manually translate into an assembly 
language called XMAP, assembled and simulated.

2.4  Descriptive Language Based Automata 
Simulators

Descriptive languages allow defining automata in formal ways 
similar to those used in textbooks. Unlike notational, assembly-like 
and procedural languages that need some effort to learn, we can 
readily use descriptive languages.

Chakraborty et al. [14] defined a Finite Automaton Description 
Language for modeling deterministic and nondeterministic finite au-

Figure 5: Transition diagram of a deterministic finite automaton as shown by 
a tool associated with Finite Automaton Description Language

FA=({qi,q0,q1,q2,q3,q4},
{0,1},D,qi,{q0});
D(qi,0)=q0,
D(qi,1)=q1,
D(q0,0)=q0,
D(q0,1)=q1,
D(q1,0)=q2,
D(q1,1)=q3,
D(q2,0)=q4,
D(q2,1)=q0,
D(q3,0)=q1,
D(q3,1)=q2,
D(q4,0)=q3,
D(q4,1)=q4;

Figure 4: Definition of a 
deterministic finite automaton 
in Finite Automaton Description 
Language



comprehensive art ic les

2011 December  •  Vol. 2  •  No. 4    acm Inroads    63

In a similar study, Chakraborty [15] defined a Turing Machine 
Description Language (Figure 6). The properties and the processing 
of this language are similar to those of the Finite Automaton Descrip-
tion Language. A single-pass fast compiler, a two-pass optimizing 
compiler [16, 17], and an interpreter have been developed. The inter-
preter uses a dynamically allocated array to simulate the tape. The dy-
namically allocated array is resized and rearranged as per the require-
ments of the simulation process. The tools have been well accepted by 
the students of Jawaharlal Nehru University and G. G. S. Indraprastha 
University; they felt that the tools helped them learn better [18].

VISUALIZATION CENTRIC 
AUTOMATA SIMULATORS
Visualization centric automata simulators try to 
demonstrate the working of automata using high 
quality graphics often augmented with animation. 
They accept, as input, specifications of automata 

either in predefined structured forms or in diagrammatic forms as 
discussed in subsections 3.1 and 3.2, respectively. After entering the 
specification of an automaton, we can often simulate its workings in 
adjustable speeds or in a stepwise mode. Care is taken to make the 
simulations informative. Simple tools, as those to convert one form of 
automata into another, are often attachments to the simulators.

3.1  Visualization Centric Automata Simulators 
Accepting Structured Input

Some visualization centric automata simulators accept specifica-
tions of automata in predefined structured formats. Such a format 
often comprises of a table to store the transition function. The user 
fills in a form providing the necessary details of an automaton and 
promptly starts the simulation process. The visualization centric au-
tomata simulators that accept structured inputs are known for their 
ease of use. As a result, quite a few of them have been developed.

In a unique study, Gilbert and Cohen [19] developed a hardware 
model of Turing machine. The developers observed that the reason-

ing needed to program Turing machines to solve simple problems 
is similar to that needed to program real computers. Consequently, 
instructors used the tool to teach the fundamentals of programming 
at the Brandeis University. The tool consists of a tape unit contain-
ing the tape and the state registers, a programming board unit con-
taining the coding and decoding circuitry, and an input console unit 
through which the user can alter the content of the tape and the state 
registers. In this tool, the tape of a Turing machine was implemented 
as a circular array with 72 locations. A three-pole 72-position electri-
cally driven rotary switch moved the read/write head over the tape. 
The content of the tape, state registers, position of the read/write 
head and direction of movement are visually stored using NE-2 neon 
lamps. The tool could be used in a stepwise mode or in an automatic 
mode with approximately two transitions per second. They also de-
veloped a language for teaching Turing machine programming. A 
cross compiler, that runs on a real computer, was used to obtain opti-
mized Turing machine code that can be executed by this tool.

Jagielski [20] developed a tool for graphical simulation of de-
terministic finite automata called MACH0. The tool first inter-
actively accepts the definition of a deterministic finite automaton. 
Then the transition diagram of the deterministic finite automaton 
is displayed. Then the working of the deterministic finite automa-
ton is simulated for any string entered by the user. The tool uses 
colorful animations to enhance pedagogy; it also allows the user to 
control the graphics to some extent. It was used as a teaching tool 
at the Swinburne Institute of Technology, now called the Swin-
burne University of Technology.

Lee [21] developed an Abstract Machine Simulator to as-
sist students to learn about finite automata, Mealy machines and 
Moore machines at the Chinese University of Hong Kong. The 
simulator accepts the definition of an automaton in a tabular for-
mat. Two simulation modules, one text based and another graphi-
cal, are available to simulate the working of the automaton. The 
graphical simulator module uses an animated transition diagram to 
demonstrate the processing of a string by the automaton. A mod-
ule to generate words recognized by the automaton is also available.

Hannay [22] developed a suite of tools to simulate finite automata, 
pushdown automata and Turing machines. In these tools, the specifica-
tions of the automata are entered directly in the state transition tables. 
Then the workings of these automata can be readily simulated either 
continuously or stepwise. A decade later, Hannay [23] developed a 
more sophisticated suite of tools to simulate finite automata, pushdown 
automata and Turing machines. The tools accept the specifications of 
the automata through interactive interfaces. The working of the au-
tomata can be simulated stepwise or instantaneously. Both the tool 
suites have been used for teaching at the Union College in Schenectady 
where the students used them to write intricate automata programs.

Vieira et al. [24] developed a suite of tools called Language 
Emulator to simulate finite automata, Mealy machines and Moore 
machines. The tools accept the specifications of the automata 
through an interactive interface and simulate their behavior. Tools 
are also available for converting a nondeterministic finite automa-
ton into a deterministic finite automaton, minimizing a finite au-
tomaton, conversions between a Mealy machine and a Moore ma-
chine, and displaying the transition diagram of an automaton. The 

TM=({q0,q1,q2,q3,q4,q5},
{a,b,c},{a,b,c,A,B,C,_},
D,q0,_,{q5});
D(q0,a)=(q1,A,R),
D(q1,a)=(q1,a,R),
D(q1,B)=(q1,B,R),
D(q1,b)=(q2,B,R),
D(q2,b)=(q2,b,R),
D(q2,C)=(q2,C,R),
D(q2,c)=(q3,C,L),
D(q3,a)=(q3,a,L),
D(q3,b)=(q3,b,L),
D(q3,c)=(q3,c,L),
D(q3,A)=(q3,A,L),
D(q3,B)=(q3,B,L),
D(q3,C)=(q3,C,L),
D(q3,_)=(q4,_,R),
D(q4,a)=(q1,A,R),
D(q4,A)=(q4,A,R),
D(q4,B)=(q4,B,R),
D(q4,C)=(q4,C,R),
D(q4,_)=(q5,_,R);

Figure 6: Definition of a Turing 
machine in Turing Machine 
Description Language



comprehensive art ic les

Fifty Years of Automata Simulation: A Review

64    acm Inroads    2011 December  •  Vol. 2  •  No. 4

ports several deterministic and nondeterministic variants of these 
automata. Using this tool, the user can easily draw an automaton by 
clicking and dragging the mouse. The properties of the states and 
the transitions of the automaton can be set interactively. After an 
automaton has been drawn, its working can be simulated in either 
a fast simulation mode or a slower step-by-step simulation mode. 
Animation has been used in this tool to enhance pedagogy. The 
tool has been used successfully for teaching at the Duke University.

Luce and Rodger [32] developed a tool called Turing Build-
ing Blocks for designing and simulating Turing machines. The 
tool supports modular design of Turing machines. Using this tool, 
a Turing machine is defined in terms of previously defined mod-
ules, called building blocks, which can be stored in a library. The 
tool provides a graphical editor using which a Turing machine can 
be designed visually and interactively. A Turing machine thus de-
signed can be simulated at varying speeds.

McFall and Dershem [33] developed a Turing Machine Simu-
lator to design and simulate finite automata and Turing machines. 
The tool allows the user to design an automaton visually by clicking 
and dragging the mouse. The tool supports both deterministic and 
nondeterministic automata. The tool also allows the use of sub-ma-
chines, which can be saved separately, in defining an automaton. Af-
ter designing an automaton, its working can be simulated at different 
speeds with or without the intervention of the user. While simulat-
ing the working of an automaton, the user can choose whether to 
simulate the working of its sub-machines visually or in the back-
ground. The tool has been used to teach an introductory course in 
computer science at the Hope College in Holland, Michigan, where 
it was found to be enhancing the understandings of the students.

Rodger and co-researchers have developed a Java Formal Lan-
guages and Automata Package [34-44]. It has actually evolved 
from its predecessor Formal Languages and Automata Package. In 
the last two decades, the tool has been under continuous enhance-
ment and new features have been added regularly. The effort put 
into developing this tool is unparalleled in the field of simulation 
of automata. As a result, today it is the most sophisticated tool for 
simulating automata. It now covers a large number of topics on 
automata and related fields. The tool is also the best documented 
among the tools for simulation of automata. The tool supports sev-
eral deterministic and nondeterministic variants of finite automata, 
pushdown automata, and Turing machines as well as Mealy ma-
chines and Moore machines. In this tool, the user has to visually 
design an automaton (Figures 8 and 9). 

The working of this automaton can then be simulated either in 
a step-by-state mode, in a fast run mode, or in a multiple run mode. 
The tool can be used to convert a nondeterministic finite automa-
ton into a deterministic finite automaton, minimize a finite au-
tomaton and perform other important operations on the automata. 
The tool uses state of the art graphics and is one of the easiest to 
use. The tool is undoubtedly the most widely used tool for simula-
tion of automata developed to date. Thousands of students have 
used it at numerous universities in more than a hundred countries. 
It has received outstanding responses at various universities where 
it has been used [44], especially at Duke University [35-40, 43] and 
at Colgate University [45].

tool suite is available in English and Portuguese. It was used as a 
teaching tool at the Universidade Federal de Minas Gerais where a 
high majority of students found it helpful.

Hamada [25] developed a Turing Machine Simulator. In this 
tool, the specification of a Turing machine in a notational language 
and the initial content of the tape are entered by the user. The tool 
simulates the working of the Turing machine stepwise. During the 
simulation process, the tool displays short informative comments 
about Turing machines.

Dominguez [26] developed a simple tool, called Automata en 
Java, to simulate deterministic finite automata. The tool accepts the 
specification of a deterministic finite automaton interactively and 
simulates it stepwise (Figure 7). The tool is available in Spanish.

3.2  Visualization Centric Automata Simulators 
Accepting Diagrammatic Input

Some visualization centric automata simulators need the user to 
draw the transition diagrams of the automata. Such a tool typically 
provides a canvas where states and transitions are added and posi-
tioned by clicking and dragging the mouse. This gives the user a 
feel of drawing an automaton on paper. Such automata simulators 
typically boast good graphics and animation. They also have various 
tools for processing automata integrated with them. As a result, stu-
dents favor such tools and a number of them have been developed.

Barwise and Etchemendy [27, 28] developed a tool, called Tur-
ing’s World, to visually design and simulate Turing machines. The 
tool supports the use of sub-machines to design more complicated 
Turing machines. Animation has been used to make the process of 
simulation more pedagogic. The tool runs on Macintosh systems 
and has been used for teaching at the Stanford University.

Rodger and co-researchers [29-31] developed a Formal Lan-
guage and Automata Package to design and simulate finite au-
tomata, pushdown automata and Turing machines. The tool sup-

Figure 7: Simulation of a deterministic finite automaton 
using Automata en Java



comprehensive art ic les

2011 December  •  Vol. 2  •  No. 4    acm Inroads    65

Robinson [46] and Robinson et al. [47] developed a Java 
Computability Toolkit to design and simulate graphically finite 
automata and Turing machines. The toolkit supports both deter-
ministic and nondeterministic finite automata. One can use it to 
convert a deterministic finite automaton into a nondeterministic 
finite automaton, minimize a finite automaton, and perform other 
important operations on finite automata. In this toolkit, a Turing 
machine is designed using simpler sub-machines. The toolkit pro-
vides five basic sub-machines, viz. move left, move right, move left 
until a specified symbol, move right until a specified symbol and 
write a specified symbol, to design other sub-machines and Turing 
machines. The toolkit uses quality graphics. It has been used for 
teaching at the State University of New York Institute of Technol-
ogy and has received positive feedback.

Bergström [48] developed a tool, called PetC, for visually de-
signing and simulating deterministic and nondeterministic finite 
automata. In this tool, one can simulate a finite automaton in ei-

ther of three modes, viz. a normal animated mode, a fast mode, 
and a stepwise mode. The tool supports important operations like 
converting a nondeterministic finite automaton to a deterministic 
finite automaton and minimizing a finite automaton. In fact, the 
tool allows the user to choose from the three available algorithms 
for minimizing a finite automaton. In this tool, both English and 
Swedish letters can be used in the input alphabet of a finite au-
tomaton. The tool uses high quality graphics and animation.

Burch [49] developed an Automaton Simulator to visually de-
sign and simulate finite automata, pushdown automata and Turing 
machines. In this tool, an automaton can be simulated either step-
wise or instantaneously. An option for rewinding the simulation 
process is also available. The tool uses high quality graphics.

McDonald [50] developed an Interactive Pushdown Automata 
Animation that allows the user to graphically design and simulate 
pushdown automata. Using this tool, a pushdown automaton can 
be simulated either stepwise or instantaneously. The tool also ex-
plains to the user the activities that take place in each step of the 
simulation process. The tool uses high quality graphics and anima-
tion to enhance pedagogy.

Grinder and co-researchers [51-54] developed a Finite State Au-
tomata Simulator to allow students to experiment with finite autom-
ata. The tool allows the user to design graphically both deterministic 
and nondeterministic finite automata. Thus designed, one can simu-
late an automaton either stepwise or instantaneously. The tool uses 
state of the art animation to enhance pedagogy. The tool has been 
used for teaching at the Montana State University at Bozeman.

Chesñevar and co-researchers [2, 55, 56] developed a Transduc-
er Automata Graphical Simulator for visually designing and simu-
lating Mealy machines and Moore machines. After an automaton 
has been visually drawn using this tool, it can be simulated either 
stepwise or continuously at adjustable speeds. Option for rewind-
ing the simulation process is also available. The tool can also be 
used for minimizing an automaton, converting a Mealy machine 
into a Moore machine and vice versa. The tool provides an interest-
ing utility of analyzing state properties by the virtue of which the 
mouse can be pointed to a state in the transition diagram to display 
important properties of the state like whether it is reachable from 
the starting state and which states are reachable from that state. 
The tool is available in English and Spanish. It has been used for 
teaching at the Universidad Nacional del Sur.

Hamada and Shiina [57] and Hamada [25] developed a Finite 
State Machine Simulator to design and simulate visually deterministic 
and nondeterministic finite automata. The tool supports important 
operations like conversion of a nondeterministic finite automaton to 
a deterministic finite automaton and minimization of a finite automa-
ton. The tool has been used for teaching at the University of Aizu.

Bovet [58] developed a Visual Automata Simulator for visu-
ally designing and simulating finite automata and Turing machines 
(Figure 10). In this tool, a Turing machine is designed using primi-
tive commands like those to write a specified symbol on the tape, 
move left, move right, move left until a specified symbol, move 
right until a specified symbol, move left until not a specified sym-
bol, move right until not a specified symbol, call a sub-machine,  
accept and reject. The tool also provides support for batch simulation.

Figure 8: Designing a deterministic finite automaton using Java Formal 
Languages and Automata Package

Figure 9: Designing a Turing machine using Java Formal Languages and 
Automata Package



comprehensive art ic les

Fifty Years of Automata Simulation: A Review

66    acm Inroads    2011 December  •  Vol. 2  •  No. 4

3.  Developers typically publish details of the design, 
implementation and working of their tools in various 
forms of refereed literature. This allows the tools to be 
discovered by others in the archives even at a much later 
date. Other researchers may use the tools to teach and 
learn automata theory, or use their experience while 
developing new tools.

4.  Some researchers make theirs tools available on the 
web. This facilitates widespread dissemination of the 
tools. However, if the web address changes and there 
is no refereed literature available about the tool, then it 
becomes difficult to trace.

5.  State of the art graphics and animation techniques are often 
used to enhance the pedagogical nature of the automata 
simulators.

6.  Since an automata simulator is primarily a pedagogical tool, 
feedback from students are accepted, reported and used for 
improvements.

7.  Although most automata simulators are available in English, 
some are available in other languages. This allows the 
proliferation of the tools among a larger user community.

Appendix A provides an executive summary of the review.

CONCLUSION
This article tries to preserve the historicity of 
automata simulators. Automata theory is, and 
will continue to be, an important field in com-
puter science. Automata simulators are help-
ful tools to teach and learn automata theory. 

Therefore, there is a need for continuity of research on automata 
simulators and their integration in teaching. Realizing the impor-
tance of automata simulators, most researchers who have worked 
on simulation of automata [8, 11, 13-15, 19, 31, 33-35, 37, 39, 47, 
50, 51, 59, 60] have expressed their interest in continuing to work 
in the field and/or asked others to join them.  Ir

Acknowledgments

The authors are thankful to a number of scientists who sent reprints of their papers and provided 
miscellaneous information about the tools they have developed.

References

	 [1]	 	Coffin, R. W., Goheen, H. E. and Stahl, W. R. 1963. Simulation of a Turing machine on a 
digital computer. Proceedings of the Fall Joint Computer Conference, pp. 35-43.

	 [2]	 	Chesñevar, C. I., Cobo, M. L. and Yurcik, W. 2003. Using theoretical computer simulators for 
formal languages and automata theory. inroads – ACM SIGCSE Bulletin, 35(2): 33-37.

	 [3]	 	Head, E. F. S. 1997. ASSIST: A Simple SImulator for State Transition. http://www.
cs.binghamton.edu/~software/ASSIST.html.

	 [4]	 	Harris, J. 1998. YATS - yet another Turing machine simulator. Journal of Computing in Small 
Colleges, 13(3): 31-35.

	 [5]	 	Harris, J. 1999. Programming a universal pushdown automaton. Proceedings of the Annual 
Southeast Regional Conference, article no. 27.

	 [6]	 	Harris, J. 2002. Programming nondeterministically using automata simulators. Journal of 
Computing in Small Colleges, 18(2): 237-245.

	 [7]	 	Shelburne, B. J. 2002. Software Projects. http://www4.wittenberg.edu/academics/mathcomp/
bjsdir/software.shtml.

	 [8]	 	Scott, T. A. 2006. Turing machine simulation used in a breadth first computer science course. 
Journal of Computing in Small Colleges, 22(1): 240-245.

	 [9]	 	Erlacher, F. 2009. Pushdown Automata Simulator. B.Sc. dissertation, Institut für Informatik, 
Universität Innsbruck.

White and Way [59] developed a Java Finite Automata Simu-
lation Tool to design and simulate visually finite automata, push-
down automata, Turing machines, and other types of automata. 
The tool supports both deterministic and nondeterministic ma-
chines. The tool allows designing complex automata by integrating 
simpler sub-machines. This tool has been used for teaching at less 
advanced levels and encouraging results have been observed.

García-Osorio et al. [60] developed a tool called Thoth for teach-
ing and learning automata theory. The tool allows visual designing 
and simulation of finite automata, pushdown automata and several 
variants of Turing machines. The tool supports both deterministic 
and nondeterministic automata. The tool is available in Spanish.

Čerňanský et al. [61] and Chudá and Rodina [62] devel-
oped an integrated simulation tool, called SimStudio, for finite  
automata, pushdown automata, Turing machines and other types 
of abstract machines. The tool supports both deterministic and 
nondeterministic machines. The tool attempts to merge the lan-
guage based and the visualization centric approaches of simula-
tion of automata. The tool can accept the input in two ways. It 
allows the user to design visually an automaton. Alternatively, the 
specification of an automaton can be entered in a descriptive lan-
guage. The working of the automaton can be simulated stepwise 
or in a free run mode. The tool is available in Slovak. It has been 
used for teaching fundamentals of theoretical computer science 
at the Slovak University of Technology in Bratislava and good 
results have been observed.

TRENDS IN AUTOMATA 
SIMULATION RESEARCH
Automata simulators are being developed and 
used for academic purposes around the globe 
for the last five decades. The automata simula-
tion research initiatives show some interesting 

trends, depicted as follows.
1.  Although a number of tools already exist for automata 

simulation, the scientific community continues to welcome 
new ones. Each tool comes with its own principles and 
concepts, and often provides new utilities.

2.  The automata simulators have been highly influenced by 
the software development tools available at the time of their 
development. For example, the invention of Java helped to 
develop automata simulators with good graphics support.

Figure 10: Designing a Turing machine using Visual Automata Simulator



comprehensive art ic les

2011 December  •  Vol. 2  •  No. 4    acm Inroads    67

	[10]	 	Curtis, M. W. 1965. A Turing machine simulator. Journal of the Association of Computing 
Machinery, 12(1): 1-13.

	[11]	 	Rose, L. L., Jones, N. D. and Barnes, B. H. 1971. Automata: a teaching aid for mathematical 
machines. ACM SIGCSE Bulletin, 3(1): 12-20.

	[12]	 	Pierce, J. C., Singletary, W. E. and Vander Mey, J. E. 1973. Tutor – a Turing machine simulator. 
Information Sciences, 5: 265-278.

	[13]	 	Knuth, D. E. and Bigelow, R. H. 1967. Programming languages for automata. Journal of the 
Association of Computing Machinery, 14(4): 615-635.

	[14]	 	Chakraborty, P., Saxena, P. C. and Katti, C. P. 201x. A compiler-based toolkit to teach and 
learn finite automata. Computer Applications in Engineering Education, in press.

	[15]	 	Chakraborty, P. 2007. A language for easy and efficient modeling of Turing machines. Prog-
ress in Natural Science, 17(7): 867-871.

	[16]	 	Nayar, A., Jha, A., Malik, A. and Anand, N. 2010. Optimizing Compiler for the Turing Machine 
Language. B.Tech. dissertation, G. T. B. Institute of Technology, G. G. S. Indraprastha University.

	[17]	 	Chakraborty, P., Taneja, S., Anand, N., Jha, A., Malik, D. and Nayar, A. 2011. An optimizing 
compiler for Turing machine description language. The IUP Journal of Computer Sciences, in 
press.

	[18]	 	Chakraborty, P., Taneja, S., Saxena, P. C. and Katti, C. P. 2011. Teaching purpose compilers – 
an exercise and its feedback. ACM Inroads, 2(2): 47-51.

	[19]	 	Gilbert, I. and Cohen, J. 1972. A simple hardware model of a Turing machine: its educational 
use. Proceedings of the ACM Annual Conference, pp. 324-329.

	[20]	 	Jagielski, R. 1988. Visual simulation of finite state machines. ACM SIGCSE Bulletin, 20(4): 
38-40.

	[21]	 	Lee, M. C. 1990. An abstract machine simulator. Lecture Notes in Computer Science, 438: 
129-141.

	[22]	 	Hannay, D. G. 1992. Hypercard automata simulation: finite-state, pushdown and Turing 
machines. ACM SIGCSE Bulletin, 24(2): 55-58.

	[23]	 	Hannay, D. G. 2002. Interactive tools for computation theory. inroads – ACM SIGCSE Bulletin, 
34(4): 68-70.

	[24]	 	Vieira, L. F. M., Vieira, M. A. M. and Vieira, N. J. 2004. Language emulator, a helpful toolkit in 
the learning process of computer theory. inroads – ACM SIGCSE Bulletin, 36(1): 135-139.

	[25]	 	Hamada, M. 2008. Supporting materials for active e-learning in computational models. 
Lecture Notes in Computer Science, 5102: 678-686.

	[26]	 	Dominguez, A. E. O. 2009. Automata. http://torturo.com/wp-content/uploads/Automata.jar.
	[27]	 	Barwise, J. and Etchemendy, J. 1986. Turing’s World: An Introduction to Computability, 

Academic Courseware Exchange.
	[28]	 	Barwise, J. and Etchemendy, J. 1998. Computers, visualization, and the nature of reasoning. 

In Bynum, T. W. and Moor, J. H. (Eds.) The Digital Phoenix: How Computers are Changing 
Philosophy, Blackwell, pp. 93-116.

	[29]	 	LoSacco, M. and Rodger, S. H. 1993. FLAP: a tool for drawing and simulating automata. Pro-
ceeding of the World Conference on Educational Multimedia and Hypermedia, pp. 310-317.

	[30]	 	Caugherty, D. and Rodger, S. H. 1994. NPDA: a tool for visualizing and simulating nondeter-
ministic pushdown automata. In Dean, N. and Shannon, G. E. (Eds.) Computational Support 
for Discrete Mathematics, DIMACS Series in Discrete Mathematics and Theoretical Computer 
Science, vol. 15, American Mathematical Society, pp. 365-377.

	[31]	 	Rodger, S. H. 1997. Integrating hands-on work into the formal languages course via tools 
and programming. Lecture Notes in Computer Science, 1260: 132-148.

	[32]	 	Luce, E. and Rodger, S. H. 1993. A visual programming environment for Turing machines. 
Proceedings of the IEEE Symposium on Visual Languages, pp. 231-236.

	[33]	 	McFall, R. and Dershem, H. L. 1994. Finite state machine simulation in an introductory lab. 
ACM SIGCSE Bulletin, 26(1): 126-130.

	[34]	 	Procopiuc, M., Procopiuc, O. and Rodger, S. H. 1996. Visualization and interaction in the 
computer science formal languages course with JFLAP. Proceedings of the Frontiers in Educa-
tion Conference, pp. 121-125.

	[35]	 	Bilska, A. O., Leider, K. H., Procopiuc, M., Procopiuc, O., Rodger, S. H., Salemme, J. R. and 
Tsang, E. 1997. A collection of tools for making automata theory and formal languages 
come alive. ACM SIGCSE Bulletin, 29(1): 15-19.

	[36]	 	Rodger, S. H. and Gramond, E. 1998. JFLAP: an aid to studying theorems in automata theory. 
inroads – ACM SIGCSE Bulletin, 30(3): 302.

	[37]	 	Gramond, E. and Rodger, S. H. 1999. Using JFLAP to interact with theorems in automata 
theory. inroads – ACM SIGCSE Bulletin, 31(1): 336-340.

	[38]	 	Hung, T. and Rodger, S. H. 2000. Increasing visualization and interaction in the automata 
theory course. inroads – ACM SIGCSE Bulletin, 32(1): 6-10.

	[39]	 	Rodger, S. H. 2002. Using hands-on visualizations to teach computer science from beginning 
courses to advanced courses. Proceeding of the Program Visualization Workshop, pp. 104-113.

	[40]	 	Cavalcante, R., Finley, T. and Rodger, S. H. 2004. A visual and interactive automata theory 
course with JFLAP 4.0. inroads – ACM SIGCSE Bulletin, 36(1): 140-144.

	[41]	 	Rodger, S. H. 2006. Learning automata and formal languages interactively with JFLAP. 
inroads – ACM SIGCSE Bulletin, 38(3): 360.

	[42]	 	Rodger, S. H., Bressler, B., Finley, T. and Reading, S. 2006. Turning automata theory into a 
hands-on course. inroads – ACM SIGCSE Bulletin, 38(1): 379-383.

	[43]	 	Rodger, S. H., Lim, J. and Reading, S. 2007. Increasing interaction and support in the formal 
languages and automata theory course. inroads – ACM SIGCSE Bulletin, 39(3): 58-62.

	[44]	 	Rodger, S. H., Wiebe, E., Lee, K. M., Morgan, C., Omar, K. and Su, J. 2009. Increasing engage-
ment in automata theory with JFLAP. inroads – ACM SIGCSE Bulletin, 41(1): 403-407.

	[45]	 	Sanchis, L. A. 2001. Computer laboratories for the theory of computing course. Journal of 
Computing Sciences in Colleges, 16(4): 262-269.

	[46]	 	Robinson, M. B. 1998. A Java-based Tool for Models of Computation. M.S. dissertation, State 
University of New York Institute of Technology.

	[47]	 	Robinson, M. B., Hamshar, J. A., Novillo, J. E. and Duchowski, A. T. 1999. A Java-based tool 
for reasoning about models of computation through simulating finite automata and Turing 
machines. inroads – ACM SIGCSE Bulletin, 31(1): 105-109.

	[48]	 	Bergström, H. 1998. Applications, Minimisation, and Visualisation of Finite State Machines. 
M.Sc. dissertation, Royal Institute of Technology, Stockholm University.

	[49]	 	Burch, C. 2001. Automaton Simulator. http://ozark.hendrix.edu/~burch/proj/autosim/index.
html.

	[50]	 	McDonald, J. 2002. Interactive pushdown automata animation. inroads – ACM SIGCSE Bul-
letin, 34(1): 376-380.

	[51]	 	Grinder, M. T. 2002. Animating automata: a cross-platform program for teaching finite 
automata. inroads – ACM SIGCSE Bulletin, 34(1): 63-67.

	[52]	 	Grinder, M. T., Kim, S. B., Lutey, T. L., Ross, R. J. and Walsh, K. F. 2002. Loving to learn theory: 
active learning modules for the theory of computing. inroads – ACM SIGCSE Bulletin, 34(1): 
371-375.

	[53]	 	Grinder, M. T. 2003. A preliminary empirical evaluation of the effectiveness of a finite state 
automaton animator. inroads – ACM SIGCSE Bulletin, 35(1): 157-161.

	[54]	 	Cogliati, J. J., Goosey, F. W., Grinder, M. T., Pascoe, B. A., Ross, R. J. and Williams, C. J. 2005. 
Realizing the promise of visualization in the theory of computing. ACM Journal of Educa-
tional Resources in Computing, 5(2): article no. 5.

	[55]	 	Esmoris, A. and Chesñevar, C. I. 2003. Una herramienta para la simulación de autómatas 
traductores en la enseñanza de teoría de la computación. Proceedings of the Argentinean 
Congress in Computer Science, pp. 287-295.

	[56]	 	Esmoris, A., Chesñevar, C. I. and González, M. P. 2005. TAGS: a software tool for simulating 
transducer automata. International Journal of Electrical Engineering Education, 42(4): 338-
349.

	[57]	 	Hamada, M. and Shiina, K. 2004. A classroom experiment for teaching automata. inroads – 
ACM SIGCSE Bulletin, 36(3): 261.

	[58]	 	Bovet, J. 2004. Visual Automata Simulator. http://www.cs.usfca.edu/~jbovet/vas.html.
	[59]	 	White, T. M. and Way, T. P. 2006. jFAST: a Java finite automata simulator. inroads – ACM 

SIGCSE Bulletin, 38(1): 384-388.
	[60]	 	García-Osorio, C., Mediavilla-Sáiz, I., Jimeno-Visitación, J. and García-Pedrajas, N. 2008. 

Teaching pushdown automata and Turing machines. inroads – ACM SIGCSE Bulletin, 40(3): 
316.

	[61]	 	Čerňanský, M., Nehéz, M., Chudá, D. and Polický, I. 2008. On using of Turing machine 
simulators in teaching of theoretical computer science. Journal of Applied Mathematics, 1(2): 
301-312.

	[62]	 	Chudá, D. and Rodina, D. 2010. Automata simulator. Proceedings of the International 
Conference on Computer Systems and Technologies, pp. 394-399.  

PINAKI ChAKrABorty, P.C. SAxeNA, AND C.P. KAttI
School of Computer and Systems Sciences
Jawaharlal Nehru University
New Delhi 110067, India

pinaki_chakraborty_163@yahoo.com
pcsaxena@mail.jnu.ac.in
cpkatti@mail.jnu.ac.in

Categories and Subject Descriptors: A.1 [General Literature]: Introductory and Survey; 
D.3.4 [Programming Languages]: Processors—Compilers; interpreters; F.1.1 [Computation by 
Abstract Devices]: Models of Computation—Automata; bounded-action devices; I.6.8 [Simulation 
and Modeling]: Types of Simulation—Visual; K.3.2 [Computers and Education]: Computer and 
Information Science Education—Computer science education
General terms: Experimentation, Languages, Theory
Keywords: Automata simulator, pedagogical tool

DoI: 10.1145/2038876.2038893 © 2011 ACM 2153-2184/11/12 $10.00

Get Connected with
◆  ◆  ◆  ◆  ◆

Computing History
Visit the IEEE History Center 

and Virtual Museum at 
◆  ◆  ◆  ◆  ◆

www.ieee.org/museum



comprehensive art ic les

Fifty Years of Automata Simulation: A Review

68    acm Inroads    2011 December  •  Vol. 2  •  No. 4

Ye
ar

1

N
am

e	
of

		
A

ut
om

at
a	

Si
m

ul
at

or
Re

fe
re

nc
e

La
ng

ua
ge

	in
	w

hi
ch

	
av

ai
la

bl
e

U
ni

ve
rs

it
y	

	
w

he
re

	u
se

d	
	

fo
r	

te
ac

hi
ng

	
pu

rp
os

e4

Ty
pe

s	
of

	a
ut

om
at

a	
su

pp
or

te
d

Su
pp

or
t	

	
fo

r	
no

n-
	

de
te

rm
in

is
m

Su
pp

or
t 	

fo
r	

su
b-

m
ac

hi
ne

s

La
ng

ua
ge

		
of

	im
pl

em
en

-
ta

ti
on

4

Ca
te

go
ry

	
ac

co
rd

in
g	

to
	

cl
as

si
fi

ca
ti

on
	

by
	C

he
sñ

ev
ar

	
et

	a
l.	

[2
]5

Ca
te

go
ry

	
ac

co
rd

in
g	

to
	

cl
as

si
fi

ca
ti

on
	

pr
op

os
ed

	in
	

th
is

	p
ap

er
6

Fi
ni

te
	

au
to

m
at

a
Pu

sh
do

w
n	

au
to

m
at

a
Tu

ri
ng

	
m

ac
hi

ne
s

Fi
ni

te
	

tr
an

sd
uc

er
s

19
63

Si
m

ul
at

io
n 

of
 

Tu
rin

g 
m

ac
hi

ne
 

on
 a

 d
ig

ita
l 

co
m

pu
te

r3

Co
ffi

n 
et

 a
l. 

[1
]

En
gl

ish


SC
A

LB
-N

L

19
65

Tu
rin

g 
M

ac
hi

ne
 

Si
m

ul
at

or
Cu

rti
s 

[1
0]

En
gl

ish
W

es
le

ya
n 

Un
iv

er
sit

y



IB

M
 1

62
0 

as
se

m
bl

y 
la

ng
ua

ge
SC

A
LB

-A
L

19
67

To
ol

 s
ui

te
 b

as
ed

 
on

 p
ro

gr
am

m
in

g 
la

ng
ua

ge
s 

fo
r 

au
to

m
at

a3

Kn
ut

h 
an

d 
Bi

ge
lo

w
 [1

3]
En

gl
ish




SC
A

LB
-P

L

19
71

Au
to

m
at

a
Ro

se
 e

t a
l. 

[1
1]

En
gl

ish
Pe

nn
sy

lv
an

ia
 

St
at

e 
Un

iv
er

sit
y




Fo
rtr

an
 IV

M
CA

LB
-A

L

19
72

A 
sim

pl
e 

ha
rd

w
ar

e 
m

od
el

 o
f T

ur
in

g 
M

ac
hi

ne
3

G
ilb

er
t a

nd
 

Co
he

n 
[1

9]
En

gl
ish

Br
an

de
is 

Un
iv

er
sit

y


SC
A

VC
-S

I

19
73

Tu
to

r –
 A

 
Tu

rin
g 

M
ac

hi
ne

 
Si

m
ul

at
or

Pi
er

ce
 e

t a
l. 

[1
2]

En
gl

ish




IB
M

 
Sy

st
em

/3
60

 
as

se
m

bl
y 

la
ng

ua
ge

SC
A

LB
-A

L

19
86

Tu
rin

g’
s W

or
ld

Ba
rw

ise
 a

nd
 

Et
ch

em
en

dy
  

[2
7,

 2
8]

En
gl

ish
St

an
fo

rd
 

Un
iv

er
sit

y


SC
A

VC
-D

I

19
88

M
AC

H0
Ja

gi
el

sk
i [

20
]

En
gl

ish
Sw

in
bu

rn
e 

Un
iv

er
sit

y 
of

 
Te

ch
no

lo
gy


C

SC
A

VC
-S

I

19
90

Ab
st

ra
ct

 
M

ac
hi

ne
 

Si
m

ul
at

or
Le

e 
[2

1]
En

gl
ish

Ch
in

es
e 

Un
iv

er
sit

y 
of

 
Ho

ng
 K

on
g




C 
(g

ra
ph

ic
al

 
sim

ul
at

or
) 

an
d 

Pr
ol

og
 

(o
th

er
w

ise
)

M
CA

VC
-S

I

19
92

Hy
pe

rc
ar

d 
Au

to
m

at
a 

Si
m

ul
at

io
n

Ha
nn

ay
 [2

2]
En

gl
ish

Un
io

n 
Co

lle
ge





Hy

pe
rT

al
k

M
CA

VC
-S

I

19
93

Fo
rm

al
 L

an
gu

ag
e 

an
d 

Au
to

m
at

a 
Pa

ck
ag

e

Lo
Sa

cc
o 

an
d 

Ro
dg

er
 [2

9]
 a

nd
 

ot
he

rs
 [3

0,
 3

1]
En

gl
ish

Du
ke

 U
ni

ve
rs

ity






C+

+
M

CA
VC

-D
I

19
93

Tu
rin

g 
Bu

ild
in

g 
Bl

oc
ks

Lu
ce

 a
nd

 R
od

ge
r 

[3
2]

En
gl

ish



C+

+
SC

A
VC

-D
I

19
94

Tu
rin

g 
M

ac
hi

ne
 

Si
m

ul
at

or
M

cF
al

l a
nd

 
De

rs
he

m
 [3

3]
En

gl
ish

Ho
pe

 C
ol

le
ge







M
CA

VC
-D

I

A
p

p
E

N
D

Ix
 A

 –
 S

u
m

m
a

ry
 o

f 
S

u
rv

e
y



comprehensive art ic les

2011 December  •  Vol. 2  •  No. 4    acm Inroads    69

A
p

p
E

N
D

Ix
 A

 –
 S

u
m

m
a

ry
 o

f 
S

u
rv

e
y

  
(c

on
ti

nu
ed

)

Ye
ar

1

N
am

e	
of

		
A

ut
om

at
a	

Si
m

ul
at

or
Re

fe
re

nc
e

La
ng

ua
ge

	in
	w

hi
ch

	
av

ai
la

bl
e

U
ni

ve
rs

it
y	

	
w

he
re

	u
se

d	
	

fo
r	

te
ac

hi
ng

	
pu

rp
os

e4

Ty
pe

s	
of

	a
ut

om
at

a	
su

pp
or

te
d

Su
pp

or
t	

	
fo

r	
no

n-
	

de
te

rm
in

is
m

Su
pp

or
t 	

fo
r	

su
b-

m
ac

hi
ne

s

La
ng

ua
ge

		
of

	im
pl

em
en

-
ta

ti
on

4

Ca
te

go
ry

	
ac

co
rd

in
g	

to
	

cl
as

si
fi

ca
ti

on
	

by
	C

he
sñ

ev
ar

	
et

	a
l.	

[2
]5

Ca
te

go
ry

	
ac

co
rd

in
g	

to
	

cl
as

si
fi

ca
ti

on
	

pr
op

os
ed

	in
	

th
is

	p
ap

er
6

Fi
ni

te
	

au
to

m
at

a
Pu

sh
do

w
n	

au
to

m
at

a
Tu

ri
ng

	
m

ac
hi

ne
s

Fi
ni

te
	

tr
an

sd
uc

er
s

19
96

Ja
va

 F
or

m
al

 
La

ng
ua

ge
s 

an
d 

Au
to

m
at

a 
Pa

ck
ag

e

Pr
oc

op
iu

c 
et

 a
l. 

[3
4]

 a
nd

 o
th

er
s 

[3
5-

45
]

En
gl

ish
Du

ke
 U

ni
ve

rs
ity

 
an

d 
se

ve
ra

l 
ot

he
rs










Ja
va

M
CA

VC
-D

I

19
97

2
A 

Si
m

pl
e 

Si
m

ul
at

or
 fo

r 
St

at
e 

Tr
an

sit
io

ns
He

ad
 [3

]
En

gl
ish







Ja
va

M
CA

LB
-N

L

19
98

Au
to

m
at

a 
sim

ul
at

or
s3

Ha
rri

s 
[4

-6
]

En
gl

ish






Vi

su
al

 B
as

ic
M

CA
LB

-N
L

19
98

Ja
va

 
Co

m
pu

ta
bi

lit
y 

To
ol

ki
t

Ro
bi

ns
on

 [4
6]

 
an

d 
Ro

bi
ns

on
  

et
 a

l. 
[4

7]
En

gl
ish

St
at

e 
Un

iv
er

sit
y 

of
 N

ew
 Y

or
k 

In
st

itu
te

 o
f 

Te
ch

no
lo

gy







Ja
va

M
CA

VC
-D

I

19
98

Pe
tC

Be
rg

st
rö

m
 [4

8]
En

gl
ish

, p
lu

s 
Sw

ed
ish

 le
tte

rs
 

in
 in

pu
t a

lp
ha

be
t




De
lp

hi
SC

A
VC

-D
I

20
01

2
Au

to
m

at
on

 
Si

m
ul

at
or

Bu
rc

h 
[4

9]
En

gl
ish





Ja

va
M

CA
VC

-D
I

20
02

2

N
on

de
te

rm
in

ist
ic

 
Pu

sh
do

w
n 

Au
to

m
at

a 
Si

m
ul

at
or

Sh
el

bu
rn

e 
[7

]
En

gl
ish

Un
iv

er
sit

y 
of

 
W

itt
en

be
rg

 



Pa

sc
al

SC
A

LB
-N

L

20
02

2
Tu

rin
g 

M
ac

hi
ne

 
Si

m
ul

at
or

Sh
el

bu
rn

e 
[7

]
En

gl
ish

Un
iv

er
sit

y 
of

 
W

itt
en

be
rg

 


Pa
sc

al
SC

A
LB

-N
L

20
02

In
te

ra
ct

iv
e 

to
ol

s 
fo

r c
om

pu
ta

tio
n 

th
eo

ry
3

Ha
nn

ay
 [2

3]
En

gl
ish

Un
io

n 
Co

lle
ge





Ja

va
Sc

rip
t

M
CA

VC
-S

I

20
02

In
te

ra
ct

iv
e 

Pu
sh

do
w

n 
Au

to
m

at
a 

An
im

at
io

n

M
cD

on
al

d 
[5

0]
En

gl
ish


Ja

va
SC

A
VC

-D
I

20
02

Fi
ni

te
 S

ta
te

 
Au

to
m

at
a 

Si
m

ul
at

or

G
rin

de
r [

51
] a

nd
 

ot
he

rs
 [5

2-
54

]
En

gl
ish

M
on

ta
na

 S
ta

te
 

Un
iv

er
sit

y 
at

 
Bo

ze
m

an



Ja

va
SC

A
VC

-D
I

20
03

Tr
an

sd
uc

er
 

Au
to

m
at

a 
G

ra
ph

ic
al

 
Si

m
ul

at
or

Ch
es

ñe
va

r e
t a

l. 
[2

] a
nd

 o
th

er
s 

[5
5,

 5
6]

En
gl

ish
 a

nd
 

Sp
an

ish
Un

iv
er

sid
ad

 
N

ac
io

na
l d

el
 S

ur


SC
A

VC
-D

I

20
04

La
ng

ua
ge

 
Em

ul
at

or
Vi

ei
ra

 e
t a

l. 
[2

4]
En

gl
ish

 a
nd

 
Po

rtu
gu

es
e

Un
iv

er
sid

ad
e 

Fe
de

ra
l d

e 
M

in
as

 
G

er
ai

s





Ja
va

M
CA

VC
-S

I



comprehensive art ic les

Fifty Years of Automata Simulation: A Review

70    acm Inroads    2011 December  •  Vol. 2  •  No. 4

Year
1

N
am

e	of		
A

utom
ata	

Sim
ulator

Reference
Language	in	w

hich	
available

U
niversity		

w
here	used		

for	teaching	
purpose

4

Types	of	autom
ata	supported

Support		
for	non-	

determ
inism

Support	
for	sub-

m
achines

Language		
o f	im

plem
en-

tation
4

Category	
according	to	
classifi

cation	
by	Chesñevar	

et	al.	[2] 5

Category	
according	to	
classifi

cation	
proposed	in	
this	paper

6

Finite	
autom

ata
Pushdow

n	
autom

ata
Turing	

m
achines

Finite	
transducers

2004
Finite State 
M

achine 
Sim

ulator

Ham
ada and 

Shiina [57] and 
Ham

ada [25]
English

University of 
Aizu




Java
SCA

VC-DI

2004
2

Visual Autom
ata 

Sim
ulator

Bovet [58]
English







Java
M

CA
VC-DI

2006
A Turing m

achine 
sim

ulation
3

Scott [8]
English

University 
of N

orthern 
Colorado


Python

SCA
LB-N

L

2006
Java Finite 
Autom

ata 
Sim

ulation Tool

W
hite and W

ay 
[59]

English








Java
M

CA
VC-DI

2007

Tool suite 
based on 

Turing M
achine 

Description 
Language

3

Chakraborty 
[15] and others 

[16-18]
English

Jaw
aharlal 

N
ehru University 
and G. G. S. 

Indraprastha 
University


C+

+
SCA

LB-DL

2008
Turing M

achine 
Sim

ulator
Ham

ada [25]
English


Java

SCA
VC-SI

2008
Thoth

G
arcía-O

sorio  
et al. [60]

Spanish






M

CA
VC-DI

2008
Sim

Studio
Čerňanský et al. 
[61] and Chudá 
and Rodina [62]

Slovak
Slovak University 
of Technology in 

Bratislava






C#

M
CA

VC-DI and 
LB-DL

2009
Pushdow

n 
Autom

ata 
Sim

ulator
Erlacher [9]

English



Java

SCA
LB-N

L

2009
2

Autom
ata  

en Java
Dom

inguez [26]
Spanish


Java

SCA
VC-SI

2011

Tool suite 
based on Finite 

Autom
aton 

Description 
Language

3

Chakraborty  
et al. [14, 18]

English

Jaw
aharlal 

N
ehru University 
and G. G. S. 

Indraprastha 
University




C+
+

SCA
LB-DL

1  Year of first publication
2  Estim

ated from
 w

ebsite
3  N

am
e given in this paper since no nam

e is m
entioned in original literature

4  Inform
ation not available for som

e tools
5  SCA: Tool for a specific class of autom

ata, M
CA: Tool for m

ultiple classes of autom
ata

6   LB-N
L: N

otational language based autom
ata sim

ulator, LB-AL: Assem
bly-like language based autom

ata sim
ulator, LB-PL: Procedural language based autom

ata sim
ulator, LB-DL: Descriptive language based autom

ata 
sim

ulator, VC-SI: Visualization centric autom
ata sim

ulator accepting structured input, VC-DI: Visualization centric autom
ata sim

ulator accepting diagram
m

atic input

A
p

p
E

N
D

Ix
 A

 – S
u

m
m

a
ry

 o
f S

u
rv

e
y

  (continued)


